Foundations of distributed multiscale computing: Formalization, specification, and analysis

Inherently complex problems from many scientific disciplines require a multiscale modeling approach. Yet its practical contents remain unclear and inconsistent. Moreover, multiscale models can be very computationally expensive, and may have potential to be executed on distributed infrastructure. In this paper we propose firm foundations for multiscale modeling and distributed multiscale computing. Useful interaction patterns of multiscale models are made predictable with a submodel execution loop (SEL), four coupling templates, and coupling topology properties. We enhance a high-level and well-defined Multiscale Modeling Language (MML) that describes and specifies multiscale models and their computational architecture in a modular way. The architecture is analyzed using directed acyclic task graphs, facilitating validity checking, scheduling distributed computing resources, estimating computational costs, and predicting deadlocks. Distributed execution using the multiscale coupling library and environment (MUSCLE) is outlined. The methodology is applied to two selected applications in nanotechnology and biophysics, showing its capabilities.

[1]  Tomasz Gubala,et al.  Exploratory programming in the virtual laboratory , 2010, Proceedings of the International Multiconference on Computer Science and Information Technology.

[2]  Dawn Walker,et al.  A Complex Automata approach for in-stent restenosis: Two-dimensional multiscale modelling and simulations , 2011, J. Comput. Sci..

[3]  A. Adel,et al.  A Meta-ontology for Architecture Description Languages and MDA Platforms , 2008, 2008 International Conference on Computational Intelligence for Modelling Control & Automation.

[4]  Daniel A. Menascé,et al.  Locking and Deadlock Detection in Distributed Data Bases , 1979, IEEE Transactions on Software Engineering.

[5]  E Weinan,et al.  Heterogeneous multiscale methods: A review , 2007 .

[6]  Alfons G. Hoekstra,et al.  Asymptotic analysis of Complex Automata models for reaction--diffusion systems , 2009 .

[7]  D. Vlachos A Review of Multiscale Analysis: Examples from Systems Biology, Materials Engineering, and Other Fluid–Surface Interacting Systems , 2005 .

[8]  Jacob Fish,et al.  Bridging the scales in nano engineering and science , 2006 .

[9]  Manfred Krafczyk,et al.  Towards Distributed Multiscale Simulation of Biological Processes , 2011, 2011 IEEE Seventh International Conference on e-Science Workshops.

[10]  E Weinan,et al.  Heterogeneous multiscale method: A general methodology for multiscale modeling , 2003 .

[11]  Assaf Schuster,et al.  Grid-enabling complex system applications with QosCosGrid: An architectural perspective , 2008, GCA.

[12]  Peter M. A. Sloot,et al.  Multi-scale modelling in computational biomedicine , 2010, Briefings Bioinform..

[13]  Wolfgang Marquardt,et al.  An ontological conceptualization of multiscale models , 2009, Comput. Chem. Eng..

[14]  Alfons G. Hoekstra,et al.  Complex Automata: Multi-scale Modeling with Coupled Cellular Automata , 2010, Simulating Complex Systems by Cellular Automata.

[15]  David Garlan,et al.  Formal Modeling and Analysis of Software Architecture: Components, Connectors, and Events , 2003, SFM.

[16]  E Weinan,et al.  The Heterognous Multiscale Methods , 2003 .

[17]  Alfons G. Hoekstra,et al.  Towards a Complex Automata Framework for Multi-scale Modeling: Formalism and the Scale Separation Map , 2007, International Conference on Computational Science.

[18]  John Shalf,et al.  The Cactus Framework and Toolkit: Design and Applications , 2002, VECPAR.

[19]  Katarzyna Rycerz,et al.  A Distributed Multiscale Computation of a Tightly Coupled Model Using the Multiscale Modeling Language , 2012, ICCS.

[20]  Graham D. Riley,et al.  Coupling integrated Earth System Model components with BFG2 , 2009 .

[21]  Leslie Lamport,et al.  Time, clocks, and the ordering of events in a distributed system , 1978, CACM.

[22]  H. Ali,et al.  Task Scheduling in Multiprocessing Systems , 1995, Computer.

[23]  Peter V. Coveney,et al.  Virtualizing access to scientific applications with the Application Hosting Environment , 2009, Comput. Phys. Commun..

[24]  W. Joppich,et al.  MpCCI—a tool for the simulation of coupled applications , 2006 .

[25]  Wil M. P. van der Aalst,et al.  The Application of Petri Nets to Workflow Management , 1998, J. Circuits Syst. Comput..

[26]  R H Smallwood,et al.  The application of multiscale modelling to the process of development and prevention of stenosis in a stented coronary artery , 2008, Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences.

[27]  Ian T. Cameron,et al.  Challenges in Multiscale Modelling and its Application to Granulation Systems , 2008 .

[28]  Manfred Krafczyk,et al.  An Agent-Based Coupling Platform for Complex Automata , 2008, ICCS.

[29]  Sophie Valcke,et al.  PRISM and ENES: a European approach to Earth system modelling , 2006 .

[30]  E. Vanden-Eijnden,et al.  The Heterogeneous Multiscale Method: A Review , 2007 .

[31]  Ishfaq Ahmad,et al.  Benchmarking and Comparison of the Task Graph Scheduling Algorithms , 1999, J. Parallel Distributed Comput..

[32]  A. Stuart,et al.  Extracting macroscopic dynamics: model problems and algorithms , 2004 .

[33]  Wei Ge,et al.  Multi-scale compromise and multi-level correlation in complex systems , 2005 .

[34]  David Garlan,et al.  A formal basis for architectural connection , 1997, TSEM.

[35]  P. Mendes,et al.  Multi-scale modelling and simulation in systems biology. , 2011, Integrative biology : quantitative biosciences from nano to macro.

[36]  J. Q. Broughton,et al.  Concurrent coupling of length scales: Methodology and application , 1999 .

[37]  C. A. R. Hoare,et al.  Communicating sequential processes , 1978, CACM.

[38]  D. Noble Modeling the Heart--from Genes to Cells to the Whole Organ , 2002, Science.

[39]  Alfons G. Hoekstra,et al.  Toward a Complex Automata Formalism for Multi-Scale Modeling , 2007 .

[40]  James Arthur Kohl,et al.  A Component Architecture for High-Performance Scientific Computing , 2006, Int. J. High Perform. Comput. Appl..

[41]  Ian T. Cameron,et al.  Classification and analysis of integrating frameworks in multiscale modelling , 2004 .

[42]  Alfons G. Hoekstra,et al.  MML: towards a Multiscale Modeling Language , 2010, ICCS.

[43]  David Gavaghan,et al.  Multi-scale computational modelling in biology and physiology , 2007, Progress in Biophysics and Molecular Biology.

[44]  Peter V. Coveney,et al.  Computer simulation study of the materials properties of intercalated and exfoliated poly(ethylene)glycol clay nanocomposites , 2009 .

[45]  Jano I. van Hemert,et al.  Scientific Workflow: A Survey and Research Directions , 2007, PPAM.

[46]  J. Gunn,et al.  Multi-scale simulations of the dynamics of in-stent restenosis: impact of stent deployment and design , 2011, Interface Focus.

[47]  Henri Casanova,et al.  On cluster resource allocation for multiple parallel task graphs , 2010, J. Parallel Distributed Comput..

[48]  Alfons G. Hoekstra,et al.  A Framework for Multiscale and Multiscience Modeling and Numerical Simulations , 2011, UC.

[49]  Robin Milner,et al.  A Calculus of Communicating Systems , 1980, Lecture Notes in Computer Science.

[50]  James Hetherington,et al.  Computational challenges of systems biology , 2004, Computer.

[51]  E Weinan,et al.  The heterogeneous multiscale method* , 2012, Acta Numerica.

[52]  Marian Bubak,et al.  From molecule to man: Decision support in individualized E-health , 2006, Computer.

[53]  Marian Bubak,et al.  Component-Based System for Grid Application Workflow Composition , 2003, PVM/MPI.

[54]  Glenford J. Myers,et al.  Structured Design , 1974, IBM Syst. J..

[55]  Constantinos C. Pantelides,et al.  New challenges and opportunities for process modelling , 2001 .

[56]  Robert C. Armstrong,et al.  Ccaffeine framework : composing and debugging applications interactively and running them statically. , 2005 .