Nitrogen-functionalized microporous carbon nanoparticles for high performance supercapacitor electrode

[1]  Yunhui Zhao,et al.  Mesoporous size controllable carbon microspheres and their electrochemical performances for supercapacitor electrodes , 2014 .

[2]  M. Jaroniec,et al.  Nitrogen enriched porous carbon spheres: attractive materials for supercapacitor electrodes and CO2 adsorption , 2014 .

[3]  D. Macfarlane,et al.  Porous nitrogen-doped hollow carbon spheres derived from polyaniline for high performance supercapacitors , 2014 .

[4]  C. Lekakou,et al.  A method to increase the energy density of supercapacitor cells by the addition of multiwall carbon nanotubes into activated carbon electrodes , 2014 .

[5]  J. M. Rojo,et al.  Correlation between capacitance and porosity in microporous carbon monoliths , 2014 .

[6]  Wei Xiong,et al.  Development of MnO2/porous carbon microspheres with a partially graphitic structure for high performance supercapacitor electrodes , 2014 .

[7]  Yanjie Hu,et al.  A three-dimensional ordered mesoporous carbon/carbon nanotubes nanocomposites for supercapacitors , 2014 .

[8]  Yunhui Zhao,et al.  Ultramicroporous Carbon Nanoparticles for the High-Performance Electrical Double-Layer Capacitor Electrode , 2014 .

[9]  V. Pavlínek,et al.  Controlled synthesis of hierarchical polyaniline nanowires/ordered bimodal mesoporous carbon nanocomposites with high surface area for supercapacitor electrodes , 2013 .

[10]  Yong-Qing Zhao,et al.  Hollow, spherical nitrogen-rich porous carbon shells obtained from a porous organic framework for the supercapacitor. , 2013, ACS applied materials & interfaces.

[11]  Yongyao Xia,et al.  A nitrogen-doped ordered mesoporous carbon nanofiber array for supercapacitors , 2013 .

[12]  H. Feng,et al.  Nitrogen and sulfur co-doped ordered mesoporous carbon with enhanced electrochemical capacitance performance , 2013 .

[13]  G. Veith,et al.  Nitrogen‐Enriched Carbons from Alkali Salts with High Coulombic Efficiency for Energy Storage Applications , 2013 .

[14]  Gaoping Cao,et al.  Nitrogen-doped porous carbon simply prepared by pyrolyzing a nitrogen-containing organic salt for supercapacitors , 2013 .

[15]  X. Chen,et al.  Nitrogen-doped porous carbon for supercapacitor with long-term electrochemical stability , 2013 .

[16]  Jing Wei,et al.  A Controllable Synthesis of Rich Nitrogen‐Doped Ordered Mesoporous Carbon for CO2 Capture and Supercapacitors , 2013 .

[17]  Yunhui Zhao,et al.  Synthesis of micro- and mesoporous carbon spheres for supercapacitor electrode , 2013, Journal of Solid State Electrochemistry.

[18]  B. Yi,et al.  High rate performance activated carbons prepared from ginkgo shells for electrochemical supercapacitors , 2013 .

[19]  Gaoping Cao,et al.  Ultramicroporous carbon as electrode material for supercapacitors , 2013 .

[20]  Se Youn Cho,et al.  Microporous Carbon Nanoplates from Regenerated Silk Proteins for Supercapacitors , 2013, Advanced materials.

[21]  D. Wright,et al.  A seeded synthetic strategy for uniform polymer and carbon nanospheres with tunable sizes for high performance electrochemical energy storage. , 2013, Chemical communications.

[22]  Q. Xie,et al.  Synthesis of ultrathin nitrogen-doped graphitic carbon nanocages as advanced electrode materials for supercapacitor. , 2013, ACS applied materials & interfaces.

[23]  Mingxian Liu,et al.  Nickel-Doped Activated Mesoporous Carbon Microspheres with Partially Graphitic Structure for Supercapacitors , 2013 .

[24]  J. Pflaum,et al.  Electrochemical double-layer charging of ultramicroporous synthetic carbons in aqueous electrolytes , 2012 .

[25]  Soojin Park,et al.  Easy synthesis of polyaniline-based mesoporous carbons and their high electrochemical performance , 2012 .

[26]  E. Fiset,et al.  Formation of graphitic tubules from ordered mesoporous carbon and their effect on supercapacitive energy storage , 2012 .

[27]  M. Jaroniec,et al.  Electrochemically active nitrogen-enriched nanocarbons with well-defined morphology synthesized by pyrolysis of self-assembled block copolymer. , 2012, Journal of the American Chemical Society.

[28]  Feng Wu,et al.  Sustainable nitrogen-doped porous carbon with high surface areas prepared from gelatin for supercapacitors , 2012 .

[29]  Shuhong Yu,et al.  Synthesis of nitrogen-doped porous carbon nanofibers as an efficient electrode material for supercapacitors. , 2012, ACS nano.

[30]  Zhibin Lei,et al.  Preparation of sucrose-based microporous carbons and their application as electrode materials for supercapacitors , 2012 .

[31]  Lei Gao,et al.  Nitrogen-doped hollow carbon spheres with enhanced electrochemical capacitive properties , 2012 .

[32]  S. Feng,et al.  A facile route for nitrogen-doped hollow graphitic carbon spheres with superior performance in supercapacitors , 2012 .

[33]  D. Jamioła,et al.  New opportunities in Stöber synthesis: preparation of microporous and mesoporous carbon spheres , 2012 .

[34]  J. Pflaum,et al.  Relationship Between Structural Properties and Electrochemical Characteristics of Monolithic Carbon Xerogel‐Based Electrochemical Double‐Layer Electrodes in Aqueous and Organic Electrolytes , 2012 .

[35]  B. S. Amirkhiz,et al.  Carbonized Chicken Eggshell Membranes with 3D Architectures as High‐Performance Electrode Materials for Supercapacitors , 2012 .

[36]  Andrew I. Cooper,et al.  Branching out with aminals: microporous organic polymers from difunctional monomers , 2012 .

[37]  Soojin Park,et al.  Synthesis of nitrogen doped microporous carbons prepared by activation-free method and their high electrochemical performance , 2011 .

[38]  D. Zhao,et al.  Carbon Materials for Chemical Capacitive Energy Storage , 2011, Advanced materials.

[39]  Qiang Sun,et al.  Temperature-programmed precise control over the sizes of carbon nanospheres based on benzoxazine chemistry. , 2011, Journal of the American Chemical Society.

[40]  Tomoki Akita,et al.  From metal-organic framework to nanoporous carbon: toward a very high surface area and hydrogen uptake. , 2011, Journal of the American Chemical Society.

[41]  Arne Thomas,et al.  Microporous sulfur-doped carbon from thienyl-based polymer network precursors. , 2011, Chemical communications.

[42]  H. Furukawa,et al.  Crystalline covalent organic frameworks with hydrazone linkages. , 2011, Journal of the American Chemical Society.

[43]  Tingting Wu,et al.  A comparative study of nitrogen-doped hierarchical porous carbon monoliths as electrodes for superca , 2011 .

[44]  Yuefeng Su,et al.  Ultralight conducting polymer/carbon nanotube composite aerogels , 2011 .

[45]  Jun Song Chen,et al.  Nitrogen-containing microporous carbon nanospheres with improved capacitive properties , 2011 .

[46]  M. Antonietti,et al.  Nitrogen‐Containing Hydrothermal Carbons with Superior Performance in Supercapacitors , 2010, Advanced materials.

[47]  Feng Li,et al.  Anchoring Hydrous RuO2 on Graphene Sheets for High‐Performance Electrochemical Capacitors , 2010 .

[48]  Bin Cheng,et al.  Preparation and electrochemical performance of polyaniline-based carbon nanotubes as electrode material for supercapacitor , 2010 .

[49]  S. Nguyen,et al.  Imine-Linked Microporous Polymer Organic Frameworks , 2010 .

[50]  Xin-bo Zhang,et al.  Metal–organic framework (MOF) as a template for syntheses of nanoporous carbons as electrode materials for supercapacitor , 2010 .

[51]  M. Dresselhaus,et al.  Raman spectroscopy in graphene , 2009 .

[52]  Michael O’Keeffe,et al.  A crystalline imine-linked 3-D porous covalent organic framework. , 2009, Journal of the American Chemical Society.

[53]  D. Su,et al.  Nanoarchitecturing of Activated Carbon: Facile Strategy for Chemical Functionalization of the Surface of Activated Carbon , 2008 .

[54]  Xiaoyi Liang,et al.  The superior electrochemical performance of oxygen-rich activated carbons prepared from bituminous coal , 2008 .

[55]  Y. Gogotsi,et al.  Materials for electrochemical capacitors. , 2008, Nature materials.

[56]  K. Lian,et al.  Electrochemical characterizations of carbon nanomaterials by the cavity microelectrode technique , 2008 .

[57]  Zhigang Chen,et al.  Synthesis and Electrochemical Property of Boron-Doped Mesoporous Carbon in Supercapacitor , 2008 .

[58]  P. Simon,et al.  Electrochemical Capacitors for Energy Management , 2008, Science.

[59]  T. Akita,et al.  Metal-organic framework as a template for porous carbon synthesis. , 2008, Journal of the American Chemical Society.

[60]  P. Taberna,et al.  Relation between the ion size and pore size for an electric double-layer capacitor. , 2008, Journal of the American Chemical Society.

[61]  D. Zhao,et al.  Direct Triblock-Copolymer-Templating Synthesis of Highly Ordered Fluorinated Mesoporous Carbon† , 2008 .

[62]  P. Taberna,et al.  Anomalous Increase in Carbon Capacitance at Pore Sizes Less Than 1 Nanometer , 2006, Science.

[63]  D. Zhao,et al.  Easy synthesis and supercapacities of highly ordered mesoporous polyacenes/carbons , 2006 .

[64]  Wei Zhang,et al.  Nanowires with a carbon nanotube core and silicon oxide sheath , 2006 .

[65]  R. Kötz,et al.  Principles and applications of electrochemical capacitors , 2000 .

[66]  Chuan Yi Tang,et al.  A 2.|E|-Bit Distributed Algorithm for the Directed Euler Trail Problem , 1993, Inf. Process. Lett..

[67]  J. Casado,et al.  Raman spectroscopic characterization of some commercially available carbon black materials , 1995 .

[68]  R. Pierotti,et al.  International Union of Pure and Applied Chemistry Physical Chemistry Division Commission on Colloid and Surface Chemistry including Catalysis* Reporting Physisorption Data for Gas/solid Systems with Special Reference to the Determination of Surface Area and Porosity Reporting Physisorption Data for , 2022 .