The RSC chromatin remodelling enzyme has a unique role in directing the accurate positioning of nucleosomes

[1]  P. Becker,et al.  Nucleosome dynamics and epigenetic stability. , 2010, Essays in biochemistry.

[2]  Aviv Regev,et al.  The Role of Nucleosome Positioning in the Evolution of Gene Regulation , 2010, PLoS biology.

[3]  N. Barkai,et al.  which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. Widespread remodeling of mid-coding sequence nucleosomes by Isw1 , 2010 .

[4]  Xin Wang,et al.  A RSC/Nucleosome Complex Determines Chromatin Architecture and Facilitates Activator Binding , 2010, Cell.

[5]  Tobias Straub,et al.  Schizosaccharomyces pombe genome-wide nucleosome mapping reveals positioning mechanisms distinct from those of Saccharomyces cerevisiae , 2010, Nature Structural &Molecular Biology.

[6]  Xi He,et al.  Divergent human remodeling complexes remove nucleosomes from strong positioning sequences , 2009, Nucleic acids research.

[7]  A. Travers,et al.  Nucleosome positioning--what do we really know? , 2009, Molecular bioSystems.

[8]  Cizhong Jiang,et al.  A compiled and systematic reference map of nucleosome positions across the Saccharomyces cerevisiae genome , 2009, Genome Biology.

[9]  G. Narlikar,et al.  Chromatin remodelers act globally, sequence positions nucleosomes locally. , 2009, Journal of molecular biology.

[10]  E. Segal,et al.  What controls nucleosome positions? , 2009, Trends in genetics : TIG.

[11]  K. Struhl,et al.  Intrinsic histone-DNA interactions are not the major determinant of nucleosome positions in vivo , 2009, Nature Structural &Molecular Biology.

[12]  B. Cairns,et al.  The biology of chromatin remodeling complexes. , 2009, Annual review of biochemistry.

[13]  H. Madhani,et al.  Mechanisms that Specify Promoter Nucleosome Location and Identity , 2009, Cell.

[14]  Noam Kaplan,et al.  Gene expression divergence in yeast is coupled to evolution of DNA-encoded nucleosome organization , 2009, Nature Genetics.

[15]  S. Barbarić,et al.  Differential Cofactor Requirements for Histone Eviction from Two Nucleosomes at the Yeast PHO84 Promoter Are Determined by Intrinsic Nucleosome Stability , 2009, Molecular and Cellular Biology.

[16]  Irene K. Moore,et al.  The DNA-encoded nucleosome organization of a eukaryotic genome , 2009, Nature.

[17]  Bryan J Venters,et al.  A canonical promoter organization of the transcription machinery and its regulators in the Saccharomyces genome , 2008, Genome research.

[18]  Christopher L. Warren,et al.  A library of yeast transcription factor motifs reveals a widespread function for Rsc3 in targeting nucleosome exclusion at promoters. , 2008, Molecular cell.

[19]  Yaniv Lubling,et al.  Distinct Modes of Regulation by Chromatin Encoded through Nucleosome Positioning Signals , 2008, PLoS Comput. Biol..

[20]  Bryan J Venters,et al.  A barrier nucleosome model for statistical positioning of nucleosomes throughout the yeast genome. , 2008, Genome research.

[21]  Steven M. Johnson,et al.  A high-resolution, nucleosome position map of C. elegans reveals a lack of universal sequence-dictated positioning. , 2008, Genome research.

[22]  G. Schnitzler Control of Nucleosome Positions by DNA Sequence and Remodeling Machines , 2008, Cell Biochemistry and Biophysics.

[23]  Stephan C. Schuster,et al.  Nucleosome organization in the Drosophila genome , 2008, Nature.

[24]  E. O’Shea,et al.  Chromatin decouples promoter threshold from dynamic range , 2008, Nature.

[25]  Dustin E. Schones,et al.  Dynamic Regulation of Nucleosome Positioning in the Human Genome , 2008, Cell.

[26]  B. Cairns,et al.  RSC regulates nucleosome positioning at Pol II genes and density at Pol III genes , 2008, The EMBO journal.

[27]  Steven J. M. Jones,et al.  Dynamic Remodeling of Individual Nucleosomes Across a Eukaryotic Genome in Response to Transcriptional Perturbation , 2007, PLoS biology.

[28]  Oliver J. Rando,et al.  Chromatin remodelling at promoters suppresses antisense transcription , 2007, Nature.

[29]  K. Rippe,et al.  DNA sequence- and conformation-directed positioning of nucleosomes by chromatin-remodeling complexes , 2007, Proceedings of the National Academy of Sciences.

[30]  Ronald W. Davis,et al.  A high-resolution atlas of nucleosome occupancy in yeast , 2007, Nature Genetics.

[31]  I. Albert,et al.  Translational and rotational settings of H2A.Z nucleosomes across the Saccharomyces cerevisiae genome , 2007, Nature.

[32]  Jun S. Song,et al.  High-throughput mapping of the chromatin structure of human promoters , 2007, Nature Biotechnology.

[33]  Neil D Clarke,et al.  Whole-genome comparison of Leu3 binding in vitro and in vivo reveals the importance of nucleosome occupancy in target site selection. , 2006, Genome research.

[34]  M. Hattori,et al.  A large-scale full-length cDNA analysis to explore the budding yeast transcriptome , 2006, Proceedings of the National Academy of Sciences.

[35]  Carlos Bustamante,et al.  DNA translocation and loop formation mechanism of chromatin remodeling by SWI/SNF and RSC. , 2006, Molecular cell.

[36]  I. Albert,et al.  Nucleosome positions predicted through comparative genomics , 2006, Nature Genetics.

[37]  Irene K. Moore,et al.  A genomic code for nucleosome positioning , 2006, Nature.

[38]  G. Längst,et al.  Nucleosome Stability at the Yeast PHO5 and PHO8 Promoters Correlates with Differential Cofactor Requirements for Chromatin Opening , 2005, Molecular and Cellular Biology.

[39]  S. Schreiber,et al.  Histone Variant H2A.Z Marks the 5′ Ends of Both Active and Inactive Genes in Euchromatin , 2005, Cell.

[40]  Lani F. Wu,et al.  Genome-Scale Identification of Nucleosome Positions in S. cerevisiae , 2005, Science.

[41]  S. Schreiber,et al.  Global nucleosome occupancy in yeast , 2004, Genome Biology.

[42]  Philipp Korber,et al.  In Vitro Assembly of the Characteristic Chromatin Organization at the Yeast PHO5 Promoter by a Replication-independent Extract System* , 2004, Journal of Biological Chemistry.

[43]  B. Pugh,et al.  Identification and Distinct Regulation of Yeast TATA Box-Containing Genes , 2004, Cell.

[44]  Andrew Flaus,et al.  Dynamic Properties of Nucleosomes during Thermal and ATP-Driven Mobilization , 2003, Molecular and Cellular Biology.

[45]  E. O’Shea,et al.  Global analysis of protein expression in yeast , 2003, Nature.

[46]  E. O’Shea,et al.  Global analysis of protein localization in budding yeast , 2003, Nature.

[47]  L. Fulton,et al.  Finding Functional Features in Saccharomyces Genomes by Phylogenetic Footprinting , 2003, Science.

[48]  B. Birren,et al.  Sequencing and comparison of yeast species to identify genes and regulatory elements , 2003, Nature.

[49]  C. Peterson,et al.  Structural analysis of the yeast SWI/SNF chromatin remodeling complex , 2003, Nature Structural Biology.

[50]  J. Widom,et al.  Role of DNA sequence in nucleosome stability and dynamics , 2001, Quarterly Reviews of Biophysics.

[51]  G. Längst,et al.  dMi‐2 and ISWI chromatin remodelling factors have distinct nucleosome binding and mobilization properties , 2000, The EMBO journal.

[52]  M. Münsterkötter,et al.  Transcriptional Regulation of the Yeast PHO8 Promoter in Comparison to the Coregulated PHO5 Promoter* , 2000, The Journal of Biological Chemistry.

[53]  S. Holmberg,et al.  Transcriptional repression of the yeast CHA1 gene requires the chromatin‐remodeling complex RSC , 1999, The EMBO journal.

[54]  C. Peterson,et al.  The core histone N-terminal domains are required for multiple rounds of catalytic chromatin remodeling by the SWI/SNF and RSC complexes. , 1999, Biochemistry.

[55]  B. Cairns,et al.  Two actin-related proteins are shared functional components of the chromatin-remodeling complexes RSC and SWI/SNF. , 1998, Molecular cell.

[56]  P. Gregory,et al.  Analyzing chromatin structure and transcription factor binding in yeast. , 1998, Methods.

[57]  T. Richmond,et al.  Crystal structure of the nucleosome core particle at 2.8 Å resolution , 1997, Nature.

[58]  V. Iyer,et al.  Poly(dA:dT), a ubiquitous promoter element that stimulates transcription via its intrinsic DNA structure. , 1995, The EMBO journal.

[59]  J. Schmitz,et al.  A nucleosome precludes binding of the transcription factor Pho4 in vivo to a critical target site in the PHO5 promoter. , 1994, The EMBO journal.

[60]  K. Fascher,et al.  Activation of the weakly regulated PHO8 promoter in S. cerevisiae: chromatin transition and binding sites for the positive regulatory protein PHO4. , 1992, Nucleic acids research.

[61]  R. Simpson Nucleosome positioning can affect the function of a cis-acting DMA elementin vivo , 1990, Nature.

[62]  H. Drew,et al.  Sequence periodicities in chicken nucleosome core DNA. , 1986, Journal of molecular biology.

[63]  A. Hinnen,et al.  Removal of positioned nucleosomes from the yeast PHO5 promoter upon PHO5 induction releases additional upstream activating DNA elements. , 1986, The EMBO journal.

[64]  R. Simpson,et al.  Conformation of DNA in chromatin core particles containing poly(dAdT)-poly(dAdT) studied by 31 P NMR spectroscopy. , 1979, Nucleic acids research.