Design and development of an ambient-temperature continuously-rotating achromatic half-wave plate for CMB polarization modulation on the POLARBEAR-2 experiment

We describe the development of an ambient-temperature continuously-rotating half-wave plate (HWP) for study of the Cosmic Microwave Background (CMB) polarization by the POLARBEAR-2 (PB2) experiment. Rapid polarization modulation suppresses 1/f noise due to unpolarized atmospheric turbulence and improves sensitivity to degree-angular-scale CMB fluctuations where the inflationary gravitational wave signal is thought to exist. A HWP modulator rotates the input polarization signal and therefore allows a single polarimeter to measure both linear polarization states, eliminating systematic errors associated with differencing of orthogonal detectors. PB2 projects a 365-mm-diameter focal plane of 7,588 dichroic, 95/150 GHz transition-edge-sensor bolometers onto a 4-degree field of view that scans the sky at ~ 1 degree per second. We find that a 500-mm-diameter ambient-temperature sapphire achromatic HWP rotating at 2 Hz is a suitable polarization modulator for PB2. We present the design considerations for the PB2 HWP, the construction of the HWP optical stack and rotation mechanism, and the performance of the fully-assembled HWP instrument. We conclude with a discussion of HWP polarization modulation for future Simons Array receivers.

[1]  A. Guth Inflationary universe: A possible solution to the horizon and flatness problems , 1981 .

[2]  A. Gilbert,et al.  The Polarbear-2 and the Simons Array Experiments , 2015, 1512.07299.

[3]  Gabriel M. Rebeiz,et al.  Dual-Polarized Sinuous Antennas on Extended Hemispherical Silicon Lenses , 2012, IEEE Transactions on Antennas and Propagation.

[4]  U. Seljak,et al.  An all sky analysis of polarization in the microwave background , 1996, astro-ph/9609170.

[5]  R. O'Brient,et al.  The new generation CMB B-mode polarization experiment: POLARBEAR , 2010, 1011.0763.

[6]  Edward J. Wollack,et al.  Advanced ACTPol Cryogenic Detector Arrays and Readout , 2015, 1510.02809.

[7]  P. A. R. Ade,et al.  MAXIPOL: Cosmic Microwave Background Polarimetry Using a Rotating Half-Wave Plate , 2006, astro-ph/0611394.

[8]  Giampaolo Pisano,et al.  Achromatic half-wave plate for submillimeter instruments in cosmic microwave background astronomy: modeling and simulation. , 2006, Applied optics.

[9]  James W. Lamb,et al.  Miscellaneous data on materials for millimetre and submillimetre optics , 1996 .

[10]  S. Utsunomiya,et al.  Design and Performance of a Prototype Polarization Modulator Rotational System for Use in Space Using a Superconducting Magnetic Bearing , 2016, IEEE Transactions on Applied Superconductivity.

[11]  P. A. R. Ade,et al.  MEASUREMENTS OF SUB-DEGREE B-MODE POLARIZATION IN THE COSMIC MICROWAVE BACKGROUND FROM 100 SQUARE DEGREES OF SPTPOL DATA , 2015, 1503.02315.

[12]  Albert Stebbins,et al.  A Probe of Primordial Gravity Waves and Vorticity , 1997 .

[13]  J. Lazear,et al.  Variable-delay polarization modulators for cryogenic millimeter-wave applications. , 2014, The Review of scientific instruments.

[14]  A. Lewis,et al.  Weak gravitational lensing of the CMB , 2006, astro-ph/0601594.

[15]  Huan T Tran Polarization comparison between on-axis and off-axis dual reflector telescopes: Zemax and Grasp8 simulations , 2003 .

[16]  N. Jarosik,et al.  Systematic effects from an ambient-temperature, continuously rotating half-wave plate. , 2016, The Review of scientific instruments.

[17]  E. M. Leitch,et al.  A MEASUREMENT OF THE COSMIC MICROWAVE BACKGROUND B-MODE POLARIZATION POWER SPECTRUM AT SUB-DEGREE SCALES WITH POLARBEAR , 2014, 1403.2369.

[18]  髙倉 理 Characterization of a continuous polarization modulator using a half-wave plate for measurements of degree-scale cosmic microwave background with the POLARBEAR experiment , 2017 .

[19]  G. P. Teply,et al.  POLARBEAR-2: an instrument for CMB polarization measurements , 2016, Astronomical Telescopes + Instrumentation.

[20]  P. Ade,et al.  The Simons Array CMB polarization experiment , 2016, Astronomical Telescopes + Instrumentation.

[21]  Matias Zaldarriaga,et al.  Reconstructing projected matter density power spectrum from cosmic microwave background , 1999 .

[22]  R. Heidinger,et al.  Silicon as an advanced window material for high power gyrotrons , 1995 .

[23]  A. G. Vieregg,et al.  BICEP2/KECK ARRAY V: MEASUREMENTS OF B-MODE POLARIZATION AT DEGREE ANGULAR SCALES AND 150 GHz BY THE KECK ARRAY , 2015, 1502.00643.

[24]  Britt Reichborn-Kjennerud,et al.  The performance of the bolometer array and readout system during the 2012/2013 flight of the E and B experiment (EBEX) , 2014, Astronomical Telescopes and Instrumentation.

[25]  Aamir Ali,et al.  The Cosmology Large Angular Scale Surveyor , 2016, Astronomical Telescopes + Instrumentation.

[26]  Shaul Hanany,et al.  Comparison of the crossed and the Gregorian Mizuguchi-Dragone for wide-field millimeter-wave astronomy. , 2008, Applied optics.

[27]  U. Seljak,et al.  Signature of gravity waves in polarization of the microwave background , 1996, astro-ph/9609169.

[28]  P. A. R. Ade,et al.  SCIENTIFIC VERIFICATION OF FARADAY ROTATION MODULATORS: DETECTION OF DIFFUSE POLARIZED GALACTIC EMISSION , 2012, 1212.0133.

[29]  E. M. Leitch,et al.  Modeling Atmospheric Emission for CMB Ground-based Observations , 2015 .

[30]  Peter A. R. Ade,et al.  The Atacama Cosmology Telescope: CMB polarization at 200 < ℓ < 9000 , 2014, 1405.5524.

[31]  R. Durrer,et al.  The cosmic microwave background: the history of its experimental investigation and its significance for cosmology , 2008, 1506.01907.

[32]  Meir Shimon,et al.  Self-Calibration of CMB Polarization Experiments , 2012, 1211.5734.

[33]  Adrian T. Lee,et al.  Multichroic dual-polarization bolometric detectors for studies of the cosmic microwave background , 2012, Other Conferences.

[34]  Michele Limon,et al.  CLASS: the cosmology large angular scale surveyor , 2014, Astronomical Telescopes and Instrumentation.

[35]  Thomas Essinger-Hileman,et al.  Transfer matrix for treating stratified media including birefringent crystals. , 2013, Applied optics.

[36]  Tomotake Matsumura,et al.  Mitigation of the spectral dependent polarization angle response for achromatic half-wave plate , 2014, 1404.5795.

[37]  H S Hou,et al.  Method for optimized design of dielectric multilayer filters. , 1974, Applied optics.

[38]  Wayne Hu,et al.  Mass Reconstruction with CMB Polarization , 2001 .

[39]  Aritoki Suzuki,et al.  Multichroic Bolometric Detector Architecture for Cosmic Microwave Background Polarimetry Experiments , 2013 .

[40]  Andrei Linde,et al.  A new inflationary universe scenario: A possible solution of the horizon , 1982 .

[41]  M. Nolta,et al.  Modulation of cosmic microwave background polarization with a warm rapidly rotating half-wave plate on the Atacama B-Mode Search instrument. , 2013, The Review of scientific instruments.

[42]  Peter Ade,et al.  A cryogenic rotation stage with a large clear aperture for the half-wave plates in the Spider instrument. , 2015, The Review of scientific instruments.

[43]  A. G. Vieregg,et al.  Neutrino Physics from the Cosmic Microwave Background and Large-Scale Structure , 2013, 1309.5383.

[44]  Matias Zaldarriaga,et al.  Direct signature of an evolving gravitational potential from the cosmic microwave background , 1999 .

[45]  Arthur Kosowsky,et al.  THE COSMIC MICROWAVE BACKGROUND AND PARTICLE PHYSICS , 2003 .

[46]  Peter Ade,et al.  POLARBEAR-2 optical and polarimeter designs , 2012, Other Conferences.

[47]  B. Gold,et al.  THE IMPACT OF THE SPECTRAL RESPONSE OF AN ACHROMATIC HALF-WAVE PLATE ON THE MEASUREMENT OF THE COSMIC MICROWAVE BACKGROUND POLARIZATION , 2011, 1112.3057.

[48]  Shaul Hanany,et al.  Performance of three- and five-stack achromatic half-wave plates at millimeter wavelengths. , 2008, Applied optics.

[49]  S. Pancharatnam,et al.  Achromatic combinations of birefringent plates , 1955 .