APPLICATION OF p-ADIC ANALYSIS TO TIME SERIES

Time series defined by a p-adic pseudo-differential equation is investigated using the expansion of the time series over p-adic wavelets. Quadratic correlation function is computed. This correlation function shows a degree-like behavior and is locally constant for some time periods. It is natural to apply this kind of models for the investigation of avalanche processes and punctuated equilibrium as well as fractal-like analysis of time series generated by measurement of pressure in oil wells.

[1]  J. S. Murguia,et al.  On the wavelet formalism for multifractal analysis. , 2001, Chaos.

[2]  A. Khrennikov,et al.  Pseudodifferential operators on ultrametric spaces and ultrametric wavelets , 2004 .

[3]  Sergei Kozyrev,et al.  Wavelet analysis as a p-adic spectral analysis , 2008 .

[4]  A. Bikulov Stochasticp-adic equations of mathematical physics , 1999 .

[5]  Tang,et al.  Self-Organized Criticality: An Explanation of 1/f Noise , 2011 .

[6]  W. A. Zúñiga-Galindo Parabolic Equations and Markov Processes Over p-Adic Fields , 2006 .

[7]  Anatoly N. Kochubei,et al.  A non-Archimedean wave equation , 2007, 0707.2653.

[8]  Sergio Albeverio,et al.  The Cauchy problems for evolutionary pseudo-differential equations over p-adic field and the wavelet theory , 2011 .

[9]  Palle E. T. Jorgensen,et al.  Wavelets on Fractals , 2003, math/0305443.

[10]  Andrei Khrennikov Hyperbolic quantum mechanics , 2000 .

[11]  Palle E. T. Jorgensen Measures in wavelet decompositions , 2005, Adv. Appl. Math..

[12]  S. V. Kozyrev,et al.  Ultrametric random field. , 2006 .

[13]  Bak,et al.  Punctuated equilibrium and criticality in a simple model of evolution. , 1993, Physical review letters.

[14]  A. Khrennikov,et al.  Wavelets on ultrametric spaces , 2005 .

[15]  Anatoly N. Kochubei,et al.  Pseudo-differential equations and stochastics over non-archimedean fields , 2001 .

[16]  W. A. Zuniga-Galindo Fundamental Solutions of Pseudo-Differential Operators over p-Adic Fields. , 2003 .

[17]  P. Jorgensen The measure of a measurement , 2007, math-ph/0702054.

[18]  A. Kochubei Schrödinger-type operator over p-adic number field , 1991 .

[19]  Ingrid Daubechies,et al.  Ten Lectures on Wavelets , 1992 .

[20]  Andrei Khrennikov,et al.  Theory of P-Adic Distributions: Linear and Nonlinear Models , 2010 .