APPLICATION OF p-ADIC ANALYSIS TO TIME SERIES
暂无分享,去创建一个
S. V. Kozyrev | A. Khrennikov | S. Kozyrev | K. Oleschko | A.Yu. Khrennikov | K. Oleschko | A. G. Jaramillo | M. de Jesus Correa Lopez | M. C. Lopez
[1] J. S. Murguia,et al. On the wavelet formalism for multifractal analysis. , 2001, Chaos.
[2] A. Khrennikov,et al. Pseudodifferential operators on ultrametric spaces and ultrametric wavelets , 2004 .
[3] Sergei Kozyrev,et al. Wavelet analysis as a p-adic spectral analysis , 2008 .
[4] A. Bikulov. Stochasticp-adic equations of mathematical physics , 1999 .
[5] Tang,et al. Self-Organized Criticality: An Explanation of 1/f Noise , 2011 .
[6] W. A. Zúñiga-Galindo. Parabolic Equations and Markov Processes Over p-Adic Fields , 2006 .
[7] Anatoly N. Kochubei,et al. A non-Archimedean wave equation , 2007, 0707.2653.
[8] Sergio Albeverio,et al. The Cauchy problems for evolutionary pseudo-differential equations over p-adic field and the wavelet theory , 2011 .
[9] Palle E. T. Jorgensen,et al. Wavelets on Fractals , 2003, math/0305443.
[10] Andrei Khrennikov. Hyperbolic quantum mechanics , 2000 .
[11] Palle E. T. Jorgensen. Measures in wavelet decompositions , 2005, Adv. Appl. Math..
[12] S. V. Kozyrev,et al. Ultrametric random field. , 2006 .
[13] Bak,et al. Punctuated equilibrium and criticality in a simple model of evolution. , 1993, Physical review letters.
[14] A. Khrennikov,et al. Wavelets on ultrametric spaces , 2005 .
[15] Anatoly N. Kochubei,et al. Pseudo-differential equations and stochastics over non-archimedean fields , 2001 .
[16] W. A. Zuniga-Galindo. Fundamental Solutions of Pseudo-Differential Operators over p-Adic Fields. , 2003 .
[17] P. Jorgensen. The measure of a measurement , 2007, math-ph/0702054.
[18] A. Kochubei. Schrödinger-type operator over p-adic number field , 1991 .
[19] Ingrid Daubechies,et al. Ten Lectures on Wavelets , 1992 .
[20] Andrei Khrennikov,et al. Theory of P-Adic Distributions: Linear and Nonlinear Models , 2010 .