Mapping and estimating the total living biomass and carbon in low-biomass woodlands using Landsat 8 CDR data

[1]  W. Schroeder,et al.  Active fire detection using Landsat-8/OLI data , 2016 .

[2]  M. Herold,et al.  An integrated pan‐tropical biomass map using multiple reference datasets , 2016, Global change biology.

[3]  Terje Gobakken,et al.  Mapping and estimating forest area and aboveground biomass in miombo woodlands in Tanzania using data from airborne laser scanning, TanDEM-X, RapidEye, and global forest maps: A comparison of estimated precision , 2016 .

[4]  Liviu Theodor Ene,et al.  Modelling aboveground forest biomass using airborne laser scanner data in the miombo woodlands of Tanzania , 2015, Carbon Balance and Management.

[5]  Ø. Dick,et al.  Spatial distribution of temporal dynamics in anthropogenic fires in miombo savanna woodlands of Tanzania , 2015, Carbon Balance and Management.

[6]  Tarquinio Mateus Magalhães Allometric equations for estimating belowground biomass of Androstachys johnsonii Prain , 2015, Carbon Balance and Management.

[7]  R. Valentini,et al.  Uncertainty of remotely sensed aboveground biomass over an African tropical forest: Propagating errors from trees to plots to pixels , 2015 .

[8]  Xiaolin Zhu,et al.  Improving forest aboveground biomass estimation using seasonal Landsat NDVI time-series , 2015 .

[9]  O. Mutanga,et al.  Evaluating the utility of the medium-spatial resolution Landsat 8 multispectral sensor in quantifying aboveground biomass in uMgeni catchment, South Africa , 2015 .

[10]  L. Amekudzi,et al.  Carbon dioxide fluxes from contrasting ecosystems in the Sudanian Savanna in West Africa , 2015, Carbon Balance and Management.

[11]  Y. Ngaga,et al.  Management, Growth, and Carbon Storage in Miombo Woodlands of Tanzania , 2014 .

[12]  Jason C. Neff,et al.  Estimates of Aboveground Biomass from Texture Analysis of Landsat Imagery , 2014, Remote. Sens..

[13]  Michael A. Wulder,et al.  Historical forest biomass dynamics modelled with Landsat spectral trajectories , 2014 .

[14]  E. Tomppo,et al.  A sampling design for a large area forest inventory: case Tanzania , 2014 .

[15]  Martha C. Anderson,et al.  Landsat-8: Science and Product Vision for Terrestrial Global Change Research , 2014 .

[16]  Ole Martin Bollandsås,et al.  Allometric models for prediction of above- and belowground biomass of trees in the miombo woodlands of Tanzania , 2013 .

[17]  Pavel Propastin,et al.  Large-scale mapping of aboveground biomass of tropical rainforest in Sulawesi, Indonesia, using Landsat ETM+ and MODIS data , 2013 .

[18]  O. Bollandsås,et al.  Relationships between diameter and height of trees in natural tropical forest in Tanzania , 2013 .

[19]  C. Justice,et al.  High-Resolution Global Maps of 21st-Century Forest Cover Change , 2013, Science.

[20]  N. Ribeiro,et al.  Monitoring vegetation dynamics and carbon stock density in miombo woodlands , 2013, Carbon Balance and Management.

[21]  S. Goetz,et al.  Uncertainty in the spatial distribution of tropical forest biomass: a comparison of pan-tropical maps , 2013, Carbon Balance and Management.

[22]  Feng Gao,et al.  LEDAPS Calibration, Reflectance, Atmospheric Correction Preprocessing Code, Version 2 , 2013 .

[23]  Julia A. Barsi,et al.  The next Landsat satellite: The Landsat Data Continuity Mission , 2012 .

[24]  Lammert Kooistra,et al.  Assessing capacities of non-Annex I countries for national forest monitoring in the context of REDD+ , 2012 .

[25]  David Saah,et al.  Aboveground Forest Biomass Estimation with Landsat and LiDAR Data and Uncertainty Analysis of the Estimates , 2012 .

[26]  S. Goetz,et al.  Estimated carbon dioxide emissions from tropical deforestation improved by carbon-density maps , 2012 .

[27]  A. Baccini,et al.  Capabilities and limitations of Landsat and land cover data for aboveground woody biomass estimation of Uganda , 2012 .

[28]  A. Marshall,et al.  Carbon storage, structure and composition of miombo woodlands in Tanzania's Eastern Arc Mountains , 2011 .

[29]  W. Salas,et al.  Benchmark map of forest carbon stocks in tropical regions across three continents , 2011, Proceedings of the National Academy of Sciences.

[30]  Haydee Karszenbaum,et al.  Assessing multi-temporal Landsat 7 ETM+ images for estimating above-ground biomass in subtropical dry forests of Argentina , 2010 .

[31]  Kenneth B. Pierce,et al.  Quantification of live aboveground forest biomass dynamics with Landsat time-series and field inventory data: A comparison of empirical modeling approaches , 2010 .

[32]  Sassan Saatchi,et al.  Aboveground biomass and leaf area index (LAI) mapping for Niassa Reserve, northern Mozambique , 2008 .

[33]  Jay D. Miller,et al.  Quantifying burn severity in a heterogeneous landscape with a relative version of the delta Normalized Burn Ratio (dNBR) , 2007 .

[34]  Marguerite Madden,et al.  A linear mixed-effects model of biomass and volume of trees using Landsat ETM+ images , 2007 .

[35]  S. Wulff SAS for Mixed Models , 2007 .

[36]  R. McRoberts A model-based approach to estimating forest area , 2006 .

[37]  R. Fournier,et al.  A comparison of four methods to map biomass from Landsat-TM and inventory data in western Newfoundland , 2006 .

[38]  R. Hall,et al.  Modeling forest stand structure attributes using Landsat ETM+ data: Application to mapping of aboveground biomass and stand volume , 2006 .

[39]  M. Duggin,et al.  A temporal analysis of urban forest carbon storage using remote sensing , 2006 .

[40]  J. Heiskanen Estimating aboveground tree biomass and leaf area index in a mountain birch forest using ASTER satellite data , 2006 .

[41]  J. Carreiras,et al.  Estimation of tree canopy cover in evergreen oak woodlands using remote sensing , 2006 .

[42]  D. Lu Aboveground biomass estimation using Landsat TM data in the Brazilian Amazon , 2005 .

[43]  Thomas R. Crow,et al.  Estimating aboveground biomass using Landsat 7 ETM+ data across a managed landscape in northern Wisconsin, USA , 2004 .

[44]  Kelly K. Caylor,et al.  A simulation analysis of the detectability of understory burns in miombo woodlands , 2004 .

[45]  R. Hall,et al.  Empirical relations between Landsat TM spectral response and forest stands near Fort Simpson, Northwest Territories, Canada , 2002 .

[46]  M. Steininger Satellite estimation of tropical secondary forest above-ground biomass: Data from Brazil and Bolivia , 2000 .

[47]  Xavier Pons,et al.  On the applicability of Landsat TM images to Mediterranean forest inventories , 1998 .

[48]  R. Lunetta,et al.  A change detection experiment using vegetation indices. , 1998 .

[49]  B. Everitt,et al.  Analysis of longitudinal data , 1998, British Journal of Psychiatry.

[50]  A. Huete,et al.  A comparison of vegetation indices over a global set of TM images for EOS-MODIS , 1997 .

[51]  B. Gao NDWI—A normalized difference water index for remote sensing of vegetation liquid water from space , 1996 .

[52]  L. Skovgaard NONLINEAR MODELS FOR REPEATED MEASUREMENT DATA. , 1996 .

[53]  G. Rondeaux,et al.  Optimization of soil-adjusted vegetation indices , 1996 .

[54]  A. Huete,et al.  A Modified Soil Adjusted Vegetation Index , 1994 .

[55]  R. H. Haas,et al.  Evaluating Landsat Thematic Mapper derived vegetation indices for estimating above-ground biomass on semiarid rangelands , 1993 .

[56]  A. Huete A soil-adjusted vegetation index (SAVI) , 1988 .

[57]  S. Zeger,et al.  Longitudinal data analysis using generalized linear models , 1986 .

[58]  H. White A Heteroskedasticity-Consistent Covariance Matrix Estimator and a Direct Test for Heteroskedasticity , 1980 .

[59]  S. Sohi Agriculture, forestry and other land use , 2014 .

[60]  T. Dokken,et al.  Making REDD Work for Communities and Forest Conservation in Tanzania , 2014 .

[61]  O. Edenhofer,et al.  Climate change 2014 : mitigation of climate change , 2014 .

[62]  E. Mtalo,et al.  Multi-temporal assessment of forest cover, stocking parameters and above-ground tree biomass dynamics in Miombo Woodlands of Tanzania , 2013 .

[63]  Eliakimu Zahabu,et al.  Participatory Forest Carbon Assessment and REDD+: Learning from Tanzania , 2012 .

[64]  easurements ei Ji,et al.  stimating aboveground biomass in interior Alaska with Landsat data and field , 2012 .

[65]  M. Kusaga Participatory forest carbon assessment in Angai village land forest reserve in Liwale district, Lindi region, Tanzania , 2011 .

[66]  Xuexia Chen,et al.  Estimating aboveground forest biomass carbon and fire consumption in the U.S. Utah High Plateaus using data from the Forest Inventory and Analysis Program, Landsat, and LANDFIRE , 2011 .

[67]  Michael A. Lefsky,et al.  Biomass accumulation rates of Amazonian secondary forest and biomass of old-growth forests from Landsat time series and the Geoscience Laser Altimeter System , 2009 .

[68]  Holly K. Gibbs,et al.  New IPCC Tier-1 Global Biomass Carbon Map for the Year 2000 , 2008 .

[69]  S. Goetz,et al.  A first map of tropical Africa’s above-ground biomass derived from satellite imagery , 2008 .

[70]  Pushpam Kumar Agriculture (Chapter8) in IPCC, 2007: Climate change 2007: Mitigation of Climate Change. Contribution of Working Group III to the Fourth assessment Report of the Intergovernmental Panel on Climate Change , 2007 .

[71]  M. Hill,et al.  Spatial information for land use management , 2000 .

[72]  S. Dondeyne,et al.  No short cuts to sound forest management: experiences from a participatory survey in Angai forest, Tanzania , 1998 .

[73]  B. Campbell The miombo in transition: woodlands and welfare in Africa. , 1996 .

[74]  B. Longest Sampling techniques. , 1971, Hospitals.

[75]  P. J. Huber The behavior of maximum likelihood estimates under nonstandard conditions , 1967 .

[76]  John Grace,et al.  Edinburgh Research Explorer Above- and Belowground Carbon Stocks in a Miombo Woodland Landscape of Mozambique , 2022 .