RAD51 paralogs promote homology-directed repair at diversifying immunoglobulin V regions

[1]  N. Maizels,et al.  Temporal Regulation of Ig Gene Diversification Revealed by Single-Cell Imaging1 , 2009, The Journal of Immunology.

[2]  N. Maizels,et al.  E2A Acts in cis in G1 Phase of Cell Cycle to Promote Ig Gene Diversification1 , 2009, The Journal of Immunology.

[3]  J. Sale,et al.  Genetic Evidence for Single-Strand Lesions Initiating Nbs1-Dependent Homologous Recombination in Diversification of Ig V in Chicken B Lymphocytes , 2009, PLoS genetics.

[4]  H. Koyama,et al.  Impact of non-homologous end-joining deficiency on random and targeted DNA integration: implications for gene targeting , 2008, Nucleic acids research.

[5]  B. Orelli,et al.  Brca1 in immunoglobulin gene conversion and somatic hypermutation. , 2008, DNA repair.

[6]  D. Bednarski,et al.  Chromatin Structure Regulates Gene Conversion , 2007, PLoS biology.

[7]  L. Serrano,et al.  Structure-based redesign of the dimerization interface reduces the toxicity of zinc-finger nucleases , 2007, Nature Biotechnology.

[8]  Adam James Waite,et al.  An improved zinc-finger nuclease architecture for highly specific genome editing , 2007, Nature Biotechnology.

[9]  M. Porteus,et al.  A Look to Future Directions in Gene Therapy Research for Monogenic Diseases , 2006, PLoS genetics.

[10]  R. Jessberger,et al.  Homologous recombination is required for AAV-mediated gene targeting , 2006, Nucleic acids research.

[11]  H. Koyama,et al.  Enhanced gene targeting efficiency by siRNA that silences the expression of the Bloom syndrome gene in human cells , 2006, Genes to cells : devoted to molecular & cellular mechanisms.

[12]  J. Stavnezer Faculty Opinions recommendation of Uracil DNA glycosylase disruption blocks Ig gene conversion and induces transition mutations. , 2006 .

[13]  S. West,et al.  Interplay between human DNA repair proteins at a unique double‐strand break in vivo , 2006, The EMBO journal.

[14]  N. Maizels Immunoglobulin gene diversification. , 2005, Annual review of genetics.

[15]  D. Bednarski,et al.  MRE11/RAD50 cleaves DNA in the AID/UNG-dependent pathway of immunoglobulin gene diversification. , 2005, Molecular cell.

[16]  M. Zoppè,et al.  Potentiation of gene targeting in human cells by expression of Saccharomyces cerevisiae Rad52 , 2005, Nucleic acids research.

[17]  N. Maizels,et al.  The MRE11-RAD50-NBS1 complex accelerates somatic hypermutation and gene conversion of immunoglobulin variable regions , 2005, Nature Immunology.

[18]  Jeffrey C. Miller,et al.  Highly efficient endogenous human gene correction using designed zinc-finger nucleases , 2005, Nature.

[19]  N. Maizels,et al.  MutSα Binds to and Promotes Synapsis of Transcriptionally Activated Immunoglobulin Switch Regions , 2005, Current Biology.

[20]  H. Kitao,et al.  Similar Effects of Brca2 Truncation and Rad51 Paralog Deficiency on Immunoglobulin V Gene Diversification in DT40 Cells Support an Early Role for Rad51 Paralogs in Homologous Recombination , 2005, Molecular and Cellular Biology.

[21]  S. Takeda,et al.  Reverse genetic studies of the DNA damage response in the chicken B lymphocyte line DT40. , 2004, DNA repair.

[22]  J. Sale Immunoglobulin diversification in DT40: a model for vertebrate DNA damage tolerance. , 2004, DNA repair.

[23]  H. Arakawa,et al.  Activation-Induced Cytidine Deaminase Initiates Immunoglobulin Gene Conversion and Hypermutation by a Common Intermediate , 2004, PLoS biology.

[24]  H. Arakawa,et al.  Immunoglobulin gene conversion: Insights from bursal B cells and the DT40 cell line , 2004, Developmental dynamics : an official publication of the American Association of Anatomists.

[25]  M. Neuberger,et al.  Immunoglobulin gene conversion in chicken DT40 cells largely proceeds through an abasic site intermediate generated by excision of the uracil produced by AID‐mediated deoxycytidine deamination , 2004, European journal of immunology.

[26]  A. Fischer,et al.  Human uracil–DNA glycosylase deficiency associated with profoundly impaired immunoglobulin class-switch recombination , 2003, Nature Immunology.

[27]  P. Sung,et al.  Recruitment of the recombinational repair machinery to a DNA double-strand break in yeast. , 2003, Molecular cell.

[28]  M. Nussenzweig,et al.  Transcription enhances AID-mediated cytidine deamination by exposing single-stranded DNA on the nontemplate strand , 2003, Nature Immunology.

[29]  F. Alt,et al.  Transcription-targeted DNA deamination by the AID antibody diversification enzyme , 2003, Nature.

[30]  M. Goodman,et al.  Activation-induced cytidine deaminase deaminates deoxycytidine on single-stranded DNA but requires the action of RNase , 2003, Proceedings of the National Academy of Sciences of the United States of America.

[31]  Shunichi Takeda,et al.  Nbs1 is essential for DNA repair by homologous recombination in higher vertebrate cells , 2002, Nature.

[32]  M. Neuberger,et al.  Altering the pathway of immunoglobulin hypermutation by inhibiting uracil-DNA glycosylase , 2002, Nature.

[33]  M. Neuberger,et al.  AID mutates E. coli suggesting a DNA deamination mechanism for antibody diversification , 2002, Nature.

[34]  M. Neuberger,et al.  AID Is Essential for Immunoglobulin V Gene Conversion in a Cultured B Cell Line , 2002, Current Biology.

[35]  H. Arakawa,et al.  Requirement of the Activation-Induced Deaminase (AID) Gene for Immunoglobulin Gene Conversion , 2002, Science.

[36]  A. Porter,et al.  Differential effects of Rad52p overexpression on gene targeting and extrachromosomal homologous recombination in a human cell line. , 2002, Nucleic acids research.

[37]  M. Neuberger,et al.  Ablation of XRCC2/3 transforms immunoglobulin V gene conversion into somatic hypermutation , 2001, Nature.

[38]  T. Honjo,et al.  Class Switch Recombination and Hypermutation Require Activation-Induced Cytidine Deaminase (AID), a Potential RNA Editing Enzyme , 2000, Cell.

[39]  J. Albala,et al.  The Rad51 Paralog Rad51B Promotes Homologous Recombinational Repair , 2000, Molecular and Cellular Biology.

[40]  A. Fischer,et al.  Activation-Induced Cytidine Deaminase (AID) Deficiency Causes the Autosomal Recessive Form of the Hyper-IgM Syndrome (HIGM2) , 2000, Cell.

[41]  N. Maizels,et al.  Coordinated response of mammalian Rad51 and Rad52 to DNA damage , 2000, EMBO reports.

[42]  K. Pike,et al.  The chicken B‐cell receptor complex and its role in avian B‐cell development , 2000, Immunological reviews.

[43]  T Yagi,et al.  Mre11 is essential for the maintenance of chromosomal DNA in vertebrate cells , 1999, The EMBO journal.

[44]  N. Maizels,et al.  Localization and dynamic relocalization of mammalian Rad52 during the cell cycle and in response to DNA damage , 1999, Current Biology.

[45]  A S Belmont,et al.  In vivo visualization of chromosomes using lac operator-repressor binding. , 1998, Trends in cell biology.

[46]  A S Belmont,et al.  In vivo localization of DNA sequences and visualization of large-scale chromatin organization using lac operator/repressor recognition , 1996, The Journal of cell biology.

[47]  C. Thompson,et al.  Chicken IgL variable region gene conversions display pseudogene donor preference and 5' to 3' polarity. , 1990, Genes & development.

[48]  J. Buerstedde,et al.  Light chain gene conversion continues at high rate in an ALV‐induced cell line. , 1990, The EMBO journal.

[49]  J. Weill,et al.  A hyperconversion mechanism generates the chicken light chain preimmune repertoire , 1987, Cell.

[50]  P. Neiman,et al.  Somatic diversification of the chicken immunoglobulin light chain gene is limited to the rearranged variable gene segment , 1987, Cell.

[51]  Ashworth,et al.  Computational redesign of endonuclease DNA binding and cleavage specificity , 2006 .

[52]  D. Schild,et al.  Mutants of the Five Rad51 Paralogs Recombinational Repair in Knockout Chromosome Instability and Defective , 2022 .