Classical and Quantum Shortcuts to Adiabaticity in a Tilted Piston.

Adiabatic quantum state evolution can be accelerated through a variety of shortcuts to adiabaticity. In one approach, a counterdiabatic quantum Hamiltonian, ĤCD, is constructed to suppress nonadiabatic excitations. In the analogous classical problem, a counterdiabatic classical Hamiltonian, HCD, ensures that the classical action remains constant even under rapid driving. Both the quantum and classical versions of this problem have been solved for the special case of scale-invariant driving, characterized by linear expansions, contractions, or translations of the system. Here we investigate an example of a non-scale-invariant system, a tilted piston. We solve exactly for the classical counterdiabatic Hamiltonian, HCD(q, p, t), which we then quantize to obtain a Hermitian operator, ĤCD(t). Using numerical simulations, we find that ĤCD effectively suppresses nonadiabatic excitations under rapid driving. These results offer a proof of principle, beyond the special case of scale-invariant driving, that quantum shortcuts to adiabaticity can successfully be constructed from their classical counterparts.

[1]  V. Fock,et al.  Beweis des Adiabatensatzes , 1928 .

[2]  S. Gill,et al.  A process for the step-by-step integration of differential equations in an automatic digital computing machine , 1951, Mathematical Proceedings of the Cambridge Philosophical Society.

[3]  Bjarne Andresen,et al.  Thermodynamics in finite time , 1984 .

[4]  Pérès,et al.  Distribution of matrix elements of chaotic systems. , 1986, Physical review. A, General physics.

[5]  A. Julg The complete symmetrization of quantum operators: new thoughts on an old problem , 1988 .

[6]  J. Avron,et al.  Adiabatic quantum transport in multiply connected systems , 1988 .

[7]  Stuart A. Rice,et al.  Adiabatic Population Transfer with Control Fields , 2003 .

[8]  Stuart A Rice,et al.  Assisted adiabatic passage revisited. , 2005, The journal of physical chemistry. B.

[9]  S. Lloyd,et al.  Quantum metrology. , 2005, Physical review letters.

[10]  Thierry Paul,et al.  Quantum computation and quantum information , 2007, Mathematical Structures in Computer Science.

[11]  P. Král,et al.  Colloquium: Coherently controlled adiabatic passage , 2007 .

[12]  Stuart A Rice,et al.  On the consistency, extremal, and global properties of counterdiabatic fields. , 2008, The Journal of chemical physics.

[13]  M. Berry,et al.  Transitionless quantum driving , 2009 .

[14]  S. Masuda,et al.  Fast-forward of adiabatic dynamics in quantum mechanics , 2009, Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences.

[15]  J. G. Muga,et al.  Fast optimal frictionless atom cooling in harmonic traps: shortcut to adiabaticity. , 2009, Physical review letters.

[16]  Patrizia Vignolo,et al.  Fast optimal transition between two equilibrium states , 2010, 1006.1495.

[17]  A. del Campo,et al.  Frictionless quantum quenches in ultracold gases: A quantum-dynamical microscope , 2011, 1103.0714.

[18]  S. Masuda,et al.  Acceleration of adiabatic quantum dynamics in electromagnetic fields , 2011 .

[19]  Patrizia Vignolo,et al.  Shortcut to adiabaticity for an interacting Bose-Einstein condensate , 2010, 1009.5868.

[20]  Wojciech H Zurek,et al.  Assisted finite-rate adiabatic passage across a quantum critical point: exact solution for the quantum Ising model. , 2012, Physical review letters.

[21]  T. R. Tan,et al.  Coherent diabatic ion transport and separation in a multizone trap array. , 2012, Physical review letters.

[22]  J. G. Muga,et al.  Shortcuts to Adiabaticity , 2012, 1212.6343.

[23]  A Walther,et al.  Controlling fast transport of cold trapped ions. , 2012, Physical review letters.

[24]  J. G. Muga,et al.  Shortcuts to adiabaticity: Fast-forward approach , 2012, 1204.3594.

[25]  Riccardo Mannella,et al.  High-fidelity quantum driving , 2011, Nature Physics.

[26]  A. del Campo,et al.  Shortcuts to adiabaticity in a time-dependent box , 2012, Scientific Reports.

[27]  F. Nori,et al.  Quantum Simulation , 2013, Quantum Atom Optics.

[28]  C. Jarzynski Generating shortcuts to adiabaticity in quantum and classical dynamics , 2013, 1305.4967.

[29]  Dieter Suter,et al.  Experimental implementation of assisted quantum adiabatic passage in a single spin. , 2012, Physical review letters.

[30]  A. Campo,et al.  Shortcuts to adiabaticity by counterdiabatic driving. , 2013, Physical review letters.

[31]  C. Jarzynski,et al.  Classical and Quantum Shortcuts to Adiabaticity for Scale-Invariant Driving , 2014, 1401.1184.

[32]  Jin-Lei Wu,et al.  Fast generations of tree-type three-dimensional entanglement via Lewis-Riesenfeld invariants and transitionless quantum driving , 2016, Scientific Reports.