MolluscDB: an integrated functional and evolutionary genomics database for the hyper-diverse animal phylum Mollusca

Abstract Mollusca represents the second largest animal phylum but remains poorly explored from a genomic perspective. While the recent increase in genomic resources holds great promise for a deep understanding of molluscan biology and evolution, access and utilization of these resources still pose a challenge. Here, we present the first comprehensive molluscan genomics database, MolluscDB (http://mgbase.qnlm.ac), which compiles and integrates current molluscan genomic/transcriptomic resources and provides convenient tools for multi-level integrative and comparative genomic analyses. MolluscDB enables a systematic view of genomic information from various aspects, such as genome assembly statistics, genome phylogenies, fossil records, gene information, expression profiles, gene families, transcription factors, transposable elements and mitogenome organization information. Moreover, MolluscDB offers valuable customized datasets or resources, such as gene coexpression networks across various developmental stages and adult tissues/organs, core gene repertoires inferred for major molluscan lineages, and macrosynteny analysis for chromosomal evolution. MolluscDB presents an integrative and comprehensive genomics platform that will allow the molluscan community to cope with ever-growing genomic resources and will expedite new scientific discoveries for understanding molluscan biology and evolution.

[1]  Ruiqiang Li,et al.  Scallop genome provides insights into evolution of bilaterian karyotype and development , 2017, Nature Ecology &Evolution.

[2]  Q. Shi,et al.  Draft genome of the Peruvian scallop Argopecten purpuratus , 2018, GigaScience.

[3]  Susumu Goto,et al.  KEGG: Kyoto Encyclopedia of Genes and Genomes , 2000, Nucleic Acids Res..

[4]  The Gene Ontology Consortium,et al.  The Gene Ontology Resource: 20 years and still GOing strong , 2018, Nucleic Acids Res..

[5]  Shanan E. Peters,et al.  The Paleobiology Database application programming interface , 2015, Paleobiology.

[6]  A. Wanninger,et al.  The evolution of molluscs , 2018, Biological reviews of the Cambridge Philosophical Society.

[7]  William McGinnis,et al.  Evolution of transcription factor function. , 2003, Current opinion in genetics & development.

[8]  Fabian J Theis,et al.  Deep learning: new computational modelling techniques for genomics , 2019, Nature Reviews Genetics.

[9]  Wen J. Li,et al.  Reference sequence (RefSeq) database at NCBI: current status, taxonomic expansion, and functional annotation , 2015, Nucleic Acids Res..

[10]  C. Ke,et al.  Evolutionary transcriptomics of metazoan biphasic life cycle supports a single intercalation origin of metazoan larvae , 2020, Nature Ecology & Evolution.

[11]  M. Ashburner,et al.  Gene Ontology: tool for the unification of biology , 2000, Nature Genetics.

[12]  Min Zhao,et al.  Whole genome analysis of a schistosomiasis-transmitting freshwater snail , 2017, Nature Communications.

[13]  P. Parkhaev Origin and the Early Evolution of the Phylum Mollusca , 2017, Paleontological Journal.

[14]  Seung-Hyun Jung,et al.  The genome of common long-arm octopus Octopus minor , 2018, GigaScience.

[15]  Ruiqiang Li,et al.  Scallop genome reveals molecular adaptations to semi-sessile life and neurotoxins , 2017, Nature Communications.

[16]  Minoru Kanehisa,et al.  New approach for understanding genome variations in KEGG , 2018, Nucleic Acids Res..

[17]  B. Seibel,et al.  Deep-Sea Octopus (Graneledone boreopacifica) Conducts the Longest-Known Egg-Brooding Period of Any Animal , 2014, PloS one.

[18]  Qiang Wang,et al.  The oyster genome reveals stress adaptation and complexity of shell formation , 2012, Nature.

[19]  Anushya Muruganujan,et al.  PANTHER version 14: more genomes, a new PANTHER GO-slim and improvements in enrichment analysis tools , 2018, Nucleic Acids Res..

[20]  L. Castro,et al.  Molluscan genomics: the road so far and the way forward , 2019, Hydrobiologia.

[21]  R. Unger,et al.  Trade-off between Transcriptome Plasticity and Genome Evolution in Cephalopods , 2017, Cell.

[22]  Xiao-Tong Wang,et al.  Editorial: Molecular Physiology in Molluscs , 2019, Front. Physiol..

[23]  C. Stoeckert,et al.  OrthoMCL: identification of ortholog groups for eukaryotic genomes. , 2003, Genome research.

[24]  Shi Wang,et al.  The evo‐devo of molluscs: Insights from a genomic perspective , 2020, Evolution & development.

[25]  W. Warren,et al.  Developing tools for the study of molluscan immunity: The sequencing of the genome of the eastern oyster, Crassostrea virginica. , 2015, Fish & shellfish immunology.

[26]  Silvio C. E. Tosatto,et al.  The Pfam protein families database in 2019 , 2018, Nucleic Acids Res..

[27]  T. Bean,et al.  Harnessing genomics to fast-track genetic improvement in aquaculture , 2020, Nature Reviews Genetics.

[28]  Gary D. Bader,et al.  Cytoscape.js: a graph theory library for visualisation and analysis , 2015, Bioinform..

[29]  T. Hughes,et al.  The Human Transcription Factors , 2018, Cell.

[30]  G. Bourque,et al.  Ten things you should know about transposable elements , 2018, Genome Biology.

[31]  Stephen A. Smith,et al.  Resolving the evolutionary relationships of molluscs with phylogenomic tools , 2011, Nature.

[32]  James C. Hu,et al.  The Gene Ontology Resource: 20 years and still GOing strong , 2019 .

[33]  P. Blier,et al.  The unusual system of doubly uniparental inheritance of mtDNA: isn't one enough? , 2007, Trends in genetics : TIG.

[34]  Brendan L. O’Connell,et al.  Deeply conserved synteny resolves early events in vertebrate evolution , 2020, Nature Ecology & Evolution.

[35]  S. Watabe,et al.  Bivalve-specific gene expansion in the pearl oyster genome: implications of adaptation to a sessile lifestyle , 2016, Zoological Letters.

[36]  Huanming Yang,et al.  A draft genome assembly of the solar-powered sea slug Elysia chlorotica , 2019, Scientific Data.

[37]  Yanjie Zhang,et al.  Adaptation to deep-sea chemosynthetic environments as revealed by mussel genomes , 2017, Nature Ecology &Evolution.

[38]  Oleg Simakov,et al.  The octopus genome and the evolution of cephalopod neural and morphological novelties , 2015, Nature.

[39]  J. Scourse,et al.  Variability of marine climate on the North Icelandic Shelf in a 1357-year proxy archive based on growth increments in the bivalve Arctica islandica , 2013 .

[40]  Chongming Wang,et al.  Chromosomal-level assembly of the blood clam, Scapharca (Anadara) broughtonii, using long sequence reads and Hi-C , 2019, GigaScience.

[41]  Hui Hu,et al.  AnimalTFDB 3.0: a comprehensive resource for annotation and prediction of animal transcription factors , 2018, Nucleic Acids Res..

[42]  W. B. Simison Molluscan Evolutionary Genomics , 2005 .

[43]  Haiying Liang,et al.  The pearl oyster Pinctada fucata martensii genome and multi-omic analyses provide insights into biomineralization , 2017, GigaScience.

[44]  Heebal Kim,et al.  Genome sequence of pacific abalone (Haliotis discus hannai): the first draft genome in family Haliotidae , 2017, GigaScience.

[45]  Dannie Durand,et al.  Gene Cluster Statistics with Gene Families , 2009, Molecular biology and evolution.

[46]  Jianfeng Ren,et al.  The Chromosome-Level Genome Assembly and Comprehensive Transcriptomes of the Razor Clam (Sinonovacula constricta) , 2020, Frontiers in Genetics.

[47]  Min Zhao,et al.  The genome of the oyster Saccostrea offers insight into the environmental resilience of bivalves , 2018, DNA research : an international journal for rapid publication of reports on genes and genomes.

[48]  S. Lewis,et al.  The generic genome browser: a building block for a model organism system database. , 2002, Genome research.

[49]  Joshua M. Stuart,et al.  A Gene-Coexpression Network for Global Discovery of Conserved Genetic Modules , 2003, Science.

[50]  L. Moroz,et al.  Phylogenomics reveals deep molluscan relationships , 2011, Nature.

[51]  The UniProt Consortium,et al.  UniProt: a worldwide hub of protein knowledge , 2018, Nucleic Acids Res..

[52]  Nicholas H. Putnam,et al.  Insights into bilaterian evolution from three spiralian genomes , 2012, Nature.

[53]  Wei Fan,et al.  The genome of the golden apple snail Pomacea canaliculata provides insight into stress tolerance and invasive adaptation , 2018, GigaScience.