ENHANCED MAGNETIC COMPRESSIBILITY AND ISOTROPIC SCALE INVARIANCE AT SUB-ION LARMOR SCALES IN SOLAR WIND TURBULENCE

The anisotropic nature of solar wind magnetic turbulence fluctuations is investigated scale by scale using high cadence in situ magnetic field measurements from the Cluster and ACE spacecraft missions. The data span five decades in scales from the inertial range to the electron Larmor radius. In contrast to the inertial range, there is a successive increase toward isotropy between parallel and transverse power at scales below the ion Larmor radius, with isotropy being achieved at the electron Larmor radius. In the context of wave-mediated theories of turbulence, we show that this enhancement in magnetic fluctuations parallel to the local mean background field is qualitatively consistent with the magnetic compressibility signature of kinetic Alfvén wave solutions of the linearized Vlasov equation. More generally, we discuss how these results may arise naturally due to the prominent role of the Hall term at sub-ion Larmor scales. Furthermore, computing higher-order statistics, we show that the full statistical signature of the fluctuations at scales below the ion Larmor radius is that of a single isotropic globally scale-invariant process distinct from the anisotropic statistics of the inertial range.

[1]  Joseph Wang,et al.  FORWARD CASCADE OF WHISTLER TURBULENCE: THREE-DIMENSIONAL PARTICLE-IN-CELL SIMULATIONS , 2012 .

[2]  G. Howes,et al.  INTERPRETING MAGNETIC VARIANCE ANISOTROPY MEASUREMENTS IN THE SOLAR WIND , 2012, 1205.0749.

[3]  S. Boldyrev,et al.  SPECTRUM OF KINETIC-ALFVÉN TURBULENCE , 2012, 1204.5809.

[4]  Bo Yang,et al.  SYMPATHETIC FILAMENT ERUPTIONS FROM A BIPOLAR HELMET STREAMER IN THE SUN , 2012 .

[5]  P. Dmitruk,et al.  LOCAL ANISOTROPY, HIGHER ORDER STATISTICS, AND TURBULENCE SPECTRA , 2012, 1201.4127.

[6]  F. Mozer,et al.  IDENTIFICATION OF KINETIC ALFVÉN WAVE TURBULENCE IN THE SOLAR WIND , 2012 .

[7]  G. Eyink,et al.  Relation of Astrophysical Turbulence and Magnetic Reconnection , 2011, 1112.0022.

[8]  Joseph Wang,et al.  Whistler turbulence forward cascade: Three‐dimensional particle‐in‐cell simulations , 2011 .

[9]  M. Goldstein,et al.  NEW INSIGHT INTO SHORT-WAVELENGTH SOLAR WIND FLUCTUATIONS FROM VLASOV THEORY , 2011, 1109.1484.

[10]  P. Canu,et al.  Multi-spacecraft investigation of space turbulence: lessons from Cluster and input to the Cross- Scale mission , 2011 .

[11]  T. Horbury,et al.  DETAILED FIT OF “CRITICAL BALANCE” THEORY TO SOLAR WIND TURBULENCE MEASUREMENTS , 2010 .

[12]  L. Rudakov,et al.  Linear and nonlinear Landau resonance of kinetic Alfvén waves: Consequences for electron distribution and wave spectrum in the solar wind , 2010, 1008.0993.

[13]  S. Saito,et al.  WHISTLER TURBULENCE WAVEVECTOR ANISOTROPIES: PARTICLE-IN-CELL SIMULATIONS , 2010 .

[14]  J. Lu,et al.  PARAMETRIC INSTABILITY OF WHISTLER WAVES IN THE ELECTRON MAGNETOHYDRODYNAMICS , 2010 .

[15]  D. J. Wu,et al.  OBSERVATIONS OF ANISOTROPIC SCALING OF SOLAR WIND TURBULENCE , 2010 .

[16]  M. Dunlop,et al.  Fractal dissipation of small‐scale magnetic fluctuations in solar wind turbulence as seen by CLUSTER , 2010 .

[17]  M. Goldstein,et al.  Structures and Intermittency in Small Scales Solar Wind Turbulence , 2010 .

[18]  R. Ergun,et al.  MEASUREMENTS OF RAPID DENSITY FLUCTUATIONS IN THE SOLAR WIND , 2010 .

[19]  T. Horbury,et al.  Anisotropy of solar wind turbulence between ion and electron scales. , 2010, Physical review letters.

[20]  Charles W. Smith,et al.  Short‐wavelength turbulence in the solar wind: Linear theory of whistler and kinetic Alfvén fluctuations , 2009 .

[21]  S. Bale,et al.  SOLAR WIND MAGNETOHYDRODYNAMICS TURBULENCE: ANOMALOUS SCALING AND ROLE OF INTERMITTENCY , 2009 .

[22]  E. Quataert,et al.  Magnetic fluctuation power near proton temperature anisotropy instability thresholds in the solar wind. , 2009, Physical review letters.

[23]  S. Schwartz,et al.  Universality of solar-wind turbulent spectrum from MHD to electron scales. , 2009, Physical review letters.

[24]  Y. Khotyaintsev,et al.  Evidence of a cascade and dissipation of solar-wind turbulence at the electron gyroscale. , 2009, Physical review letters.

[25]  P. Dmitruk,et al.  Waves and turbulence in magnetohydrodynamic direct numerical simulations , 2009 .

[26]  Jungyeon Cho,et al.  SIMULATIONS OF ELECTRON MAGNETOHYDRODYNAMIC TURBULENCE , 2009, 0904.0661.

[27]  J. Podesta DEPENDENCE OF SOLAR-WIND POWER SPECTRA ON THE DIRECTION OF THE LOCAL MEAN MAGNETIC FIELD , 2009, 0901.4940.

[28]  Sean Oughton,et al.  Anisotropic scaling of magnetohydrodynamic turbulence. , 2008, Physical review letters.

[29]  Hui Li,et al.  Cascade of whistler turbulence: Particle‐in‐cell simulations , 2008 .

[30]  V. Carbone,et al.  Compressible turbulence in Hall Magnetohydrodynamics , 2007 .

[31]  L. Sorriso-Valvo,et al.  Small-Scale Energy Cascade of the Solar Wind Turbulence , 2007, 0710.0763.

[32]  S. Chapman,et al.  Quantifying scaling in the velocity field of the anisotropic turbulent solar wind , 2007 .

[33]  Kathleen E. Hamilton,et al.  Interplanetary magnetic fluctuation anisotropy in the inertial range , 2006 .

[34]  Kathleen E. Hamilton,et al.  Dependence of the Dissipation Range Spectrum of Interplanetary Magnetic Fluctuationson the Rate of Energy Cascade , 2006 .

[35]  W. Dorland,et al.  Astrophysical Gyrokinetics: Basic Equations and Linear Theory , 2005, astro-ph/0511812.

[36]  T. D. Wit,et al.  Can high-order moments be meaningfully estimated from experimental turbulence measurements? , 2004 .

[37]  A. Hirose,et al.  Remarks on the discrete Alfvén wave spectrum induced by the Hall current , 2004 .

[38]  Olga Alexandrova,et al.  Cluster observations of finite amplitude Alfven waves and small-scale magnetic filaments downstream of a quasi-perpendicular shock , 2004 .

[39]  B. Castaing,et al.  On the rapid increase of intermittency in the near-dissipation range of fully developed turbulence , 2003, cond-mat/0311409.

[40]  M. Goossens,et al.  An Introduction to Plasma Astrophysics and Magnetohydrodynamics , 2003 .

[41]  Hui Li,et al.  Solar wind magnetic fluctuation spectra: Dispersion versus damping , 2001 .

[42]  A. Walden,et al.  Wavelet Methods for Time Series Analysis , 2000 .

[43]  Charles W. Smith,et al.  Dissipation range dynamics: Kinetic Alfvn waves and the importance of , 1999 .

[44]  J. Hollweg,et al.  Kinetic Alfvén wave revisited , 1999 .

[45]  T. Scheike Essential Wavelets for Statistical Applications and Data Analysis: R. Todd Ogden, Birkhäuser, 1997. No. of pages: xii+198. Price: DM 78. ISBN 3‐7643‐3864‐4 , 1999 .

[46]  W. Matthaeus,et al.  Contribution of Cyclotron-resonant Damping to Kinetic Dissipation of Interplanetary Turbulence , 1998, astro-ph/9809017.

[47]  A. Walden,et al.  The phase–corrected undecimated discrete wavelet packet transform and its application to interpreting the timing of events , 1998, Proceedings of the Royal Society of London. Series A: Mathematical, Physical and Engineering Sciences.

[48]  S. R. Sears,et al.  The ACE Science Center , 1998 .

[49]  H. K. Wong,et al.  Observational constraints on the dynamics of the interplanetary magnetic field dissipation range , 1998 .

[50]  K. Knight Stable Non-Gaussian Random Processes Gennady Samorodnitsky and Murad S. Taqqu Chapman and Hall, 1994 , 1997, Econometric Theory.

[51]  W. Matthaeus,et al.  Anisotropic three-dimensional MHD turbulence , 1996 .

[52]  D. Applebaum Stable non-Gaussian random processes , 1995, The Mathematical Gazette.

[53]  Eckart Marsch,et al.  MHD structures, waves and turbulence in the solar wind: Observations and theories , 1995 .

[54]  Ingrid Daubechies,et al.  Ten Lectures on Wavelets , 1992 .

[55]  F. Lefeuvre,et al.  Local characterization of homogeneous turbulence in a space plasma from simultaneous measurements of field components at several points in space , 1991 .

[56]  Benoit B. Mandelbrot,et al.  Fractal Geometry of Nature , 1984 .

[57]  F. Coroniti,et al.  Ambiguities in the deduction of rest frame fluctuation spectrums from spectrums computed in moving frames , 1976 .

[58]  L. Davis,et al.  Large-Amplitude Alfvn Waves in the Interplanetary Medium' , 1971 .

[59]  G. Batchelor,et al.  The theory of homogeneous turbulence , 1954 .

[60]  田中 勝人 D. B. Percival and A. T. Walden: Wavelet Methods for Time Series Analysis, Camb. Ser. Stat. Probab. Math., 4, Cambridge Univ. Press, 2000年,xxvi + 594ページ. , 2009 .

[61]  S. Mallat,et al.  A Wavelet Tour of Signal Processing : The Sparse Way , 2008 .

[62]  Kathleen E. Hamilton,et al.  Anisotropies and helicities in the solar wind inertial and dissipation ranges at 1 AU , 2008 .

[63]  Marie Farge,et al.  Wavelets: Application to Turbulence , 2006 .

[64]  T. Horbury,et al.  Multispacecraft Measurement of Anisotropic Correlation Functions in Solar Wind Turbulence , 2006 .

[65]  A. Newell,et al.  Anisotropic Turbulence of Shear-Alfvén Waves , 2001 .

[66]  C. P. Escoubet,et al.  CLUSTER – SCIENCE AND MISSION OVERVIEW , 1997 .