QSAR modeling for lipid peroxidation inhibition potential of flavonoids using topological and structural parameters

In the present study, Quantitative Structure-Activity Relationship (QSAR) modeling has been carried out for lipid peroxidation (LPO)-inhibition potential of a set of 27 flavonoids, using structural and topological parameters. For the development of models, three methods were used: (1) stepwise regression, (2) factor analysis followed by multiple linear regressions (FA-MLR) and (3) partial least squares (PLS) analysis. The best equation was obtained from stepwise regression analysis (Q2 = 0.626) considering the leave-oneout prediction statistics.

[1]  N. Trinajstic,et al.  Structure-radical scavenging activity relationships of flavonoids , 2003 .

[2]  I. Arts,et al.  Flavonols, flavones and flavanols: nature, occurrence and dietary burden , 2000 .

[3]  Kunal Roy,et al.  Exploring QSAR with E-state index: selectivity requirements for COX-2 versus COX-1 binding of terphenyl methyl sulfones and sulfonamides. , 2004, Bioorganic & medicinal chemistry letters.

[4]  Lemont B. Kier,et al.  The E-State as the Basis for Molecular Structure Space Definition and Structure Similarity , 2000, J. Chem. Inf. Comput. Sci..

[5]  T. Slater,et al.  The stimulatory effects of carbon tetrachloride and other halogenoalkanes on peroxidative reactions in rat liver fractions in vitro. General features of the systems used. , 1971, The Biochemical journal.

[6]  K. Roy,et al.  QSAR of human factor Xa inhibitor N2-aroylanthranilamides using principal component factor analysis. , 2002, Drug design and discovery.

[7]  Jane C. Kramer ALT , 1987 .

[8]  Rainer Franke,et al.  Theoretical drug design methods , 1984 .

[9]  Roseli A. F. Romero,et al.  A multiple linear regression and partial least squares study of flavonoid compounds with anti-HIV activity , 2001 .

[10]  Lemont B. Kier A Cellular Automata Model of Bond Interactions Among Molecules , 2000, J. Chem. Inf. Comput. Sci..

[11]  Károly Héberger,et al.  Quantitative structure-antioxidant activity relationships of flavonoid compounds. , 2004, Molecules.

[12]  I. Gutman,et al.  Graph theory and molecular orbitals. XII. Acyclic polyenes , 1975 .

[13]  Kunal Roy,et al.  Exploring selectivity requirements for COX-2 versus COX-1 binding of 3,4-diaryloxazolones using E-state index. , 2003, Bioorganic & medicinal chemistry letters.

[14]  G. Bellomo,et al.  4-Hydroxynonenal as a biological signal: molecular basis and pathophysiological implications. , 1999, Antioxidants & redox signaling.

[15]  Lemont B. Kier,et al.  An Electrotopological-State Index for Atoms in Molecules , 1990, Pharmaceutical Research.

[16]  R. Darlington,et al.  Regression and Linear Models , 1990 .

[17]  Barry Halliwell,et al.  Antioxidants in Nutrition, Health, and Disease , 1995 .

[18]  E. Silla,et al.  A density functional study of flavonoid compounds with anti-HIV activity. , 2006, European journal of medicinal chemistry.

[19]  H. Wiener Structural determination of paraffin boiling points. , 1947, Journal of the American Chemical Society.

[20]  Kunal Roy,et al.  QSAR modeling of HIV-1 reverse transcriptase inhibitor 2-amino-6-arylsulfonylbenzonitriles and congeners using molecular connectivity and E-state parameters. , 2004, Bioorganic & medicinal chemistry.

[21]  L. Benson,et al.  Doxorubicin-induced acute changes in cytotoxic aldehydes, antioxidant status and cardiac function in the rat. , 1997, Biochimica et biophysica acta.

[22]  Lemont B. Kier,et al.  A Shape Index from Molecular Graphs , 1985 .

[23]  J. Sunamoto,et al.  Interaction of flavonoids with 1,1-diphenyl-2-picrylhydrazyl free radical, liposomal membranes and soybean lipoxygenase-1. , 1988, Biochemical pharmacology.

[24]  M. Novič,et al.  Properties of flavonoids influencing the binding to bilitranslocase investigated by neural network modelling. , 2007, Biochemical pharmacology.

[25]  L. Hall,et al.  Molecular connectivity in chemistry and drug research , 1976 .

[26]  A. Khlebnikov,et al.  Improved quantitative structure-activity relationship models to predict antioxidant activity of flavonoids in chemical, enzymatic, and cellular systems. , 2007, Bioorganic & medicinal chemistry.

[27]  Samir Samman,et al.  Flavonoids—Chemistry, metabolism, cardioprotective effects, and dietary sources , 1996 .

[28]  Shuzhong Zhang,et al.  Structure activity relationships and quantitative structure activity relationships for the flavonoid-mediated inhibition of breast cancer resistance protein. , 2005, Biochemical pharmacology.

[29]  G. G. Stokes "J." , 1890, The New Yale Book of Quotations.

[30]  Kunal Roy,et al.  QSAR modeling of antiradical and antioxidant activities of flavonoids using electrotopological state (E-State) atom parameters , 2007 .

[31]  E. Middleton Biological Properties of Plant Flavonoids: An Overview , 1996 .

[32]  İ. Durak,et al.  Adenosine deaminase, 5' nucleotidase, xanthine oxidase, superoxide dismutase, and catalase activities in cancerous and noncancerous human laryngeal tissues. , 1994, Free radical biology & medicine.

[33]  K. Basu,et al.  Interaction of flavonoids with red blood cell membrane lipids and proteins: antioxidant and antihemolytic effects. , 2007, International journal of biological macromolecules.

[34]  Lemont B. Kier,et al.  The Electrotopological State: An Atom Index for QSAR , 1991 .

[35]  A. Thakur,et al.  QSAR study of flavonoid derivatives as p56lck tyrosinkinase inhibitors. , 2004, Bioorganic & medicinal chemistry.

[36]  U. Kukongviriyapan,et al.  Protective effects of quercetin against phenylhydrazine-induced vascular dysfunction and oxidative stress in rats. , 2007, Food and chemical toxicology : an international journal published for the British Industrial Biological Research Association.

[37]  Han van de Waterbeemd,et al.  Multivariate Data Analysis of Chemical and Biological Data , 1995 .

[38]  W. Bretz,et al.  Red Marine Algae Lithothamnion calcareum Supports Dental Enamel Mineralization , 2023, Marine drugs.

[39]  O. P. Agarwal The anti-inflammatory action of nepitrin, a flavonoid , 1982, Agents and Actions.

[40]  Kunal Roy,et al.  Exploring QSAR of melatonin receptor ligand benzofuran derivatives using E-state index. , 2004, Bioorganic & medicinal chemistry letters.

[41]  Jerzy Leszczynski,et al.  A Quantitative Structure‐Activity Relationship (QSAR) Study of the Antioxidant Activity of Flavonoids , 2005 .

[42]  Ernst W. Mayr,et al.  Computational Graph Theory , 2002, Computing Supplementum.

[43]  R. Badhan,et al.  In silico modelling of the interaction of flavonoids with human P-glycoprotein nucleotide-binding domain. , 2006, European journal of medicinal chemistry.

[44]  A. Balaban Highly discriminating distance-based topological index , 1982 .

[45]  John C Dearden,et al.  Guidelines for developing and using quantitative structure‐activity relationships , 2003, Environmental toxicology and chemistry.

[46]  J N Weinstein,et al.  Quantitative structure-antitumor activity relationships of camptothecin analogues: cluster analysis and genetic algorithm-based studies. , 2001, Journal of medicinal chemistry.

[47]  Han van de Waterbeemd,et al.  Chemometric methods in molecular design , 1995 .

[48]  M. Randic Characterization of molecular branching , 1975 .

[49]  G. W. Snedecor Statistical Methods , 1964 .

[50]  N. O'Brien,et al.  Dietary flavonols: chemistry, food content, and metabolism. , 2002, Nutrition.

[51]  Lemont B. Kier,et al.  Comparison of electrotopological state indexes with molecular orbital parameters : inhibition of MAO by hydrazides , 1993 .

[52]  T. Maung on in C , 2010 .