The Skull Stripping Problem in MRI Solved by a Single 3D Watershed Transform

A robust method for the removal of non-cerebral tissue in T1-weighted magnetic resonance (MR) brain images is presented. This procedure, often referred to as skull stripping, is an important step in neuroimaging. Our novel approach consists of a single morphological operation, namely a modified three-dimensional fast watershed transform that is perfectly suited to locate the brain, including the cerebellum and the spinal cord.

[1]  Frithjof Kruggel,et al.  Fast Segmentation of Brain Magnetic Resonance Tomograms , 1995, CVRMed.

[2]  S. Resnick,et al.  An image-processing system for qualitative and quantitative volumetric analysis of brain images. , 1998, Journal of computer assisted tomography.

[3]  Heinz-Otto Peitgen,et al.  ILabMed-Workstation - Eine Entwicklungsumgebung für radiologische Anwendungen , 1999, Bildverarbeitung für die Medizin.

[4]  Frithjof Kruggel,et al.  Segmentation of White Matter Lesions from Volumetric MR Images , 1999, MICCAI.

[5]  W. Eric L. Grimson,et al.  Adaptive Segmentation of MRI Data , 1995, CVRMed.

[6]  Richard M. Leahy,et al.  Surface-based labeling of cortical anatomy using a deformable atlas , 1997, IEEE Transactions on Medical Imaging.

[7]  Computer-Assisted Intervention,et al.  Medical Image Computing and Computer-Assisted Intervention – MICCAI’99 , 1999, Lecture Notes in Computer Science.

[8]  Benoit M. Dawant,et al.  Automatic brain segmentation and validation: image-based versus atlas-based deformable models , 1997, Medical Imaging.

[9]  Jerry L. Prince,et al.  Adaptive fuzzy segmentation of magnetic resonance images , 1999, IEEE Transactions on Medical Imaging.

[10]  D. Louis Collins,et al.  Design and construction of a realistic digital brain phantom , 1998, IEEE Transactions on Medical Imaging.

[11]  David N. Kennedy,et al.  Neuroanatomical Segmentation in MRI: Technological Objectives , 1997, Int. J. Pattern Recognit. Artif. Intell..

[12]  Hans-Peter Meinzer,et al.  Bildverarbeitung für die Medizin 1999 , 1999 .

[13]  Karl J. Friston,et al.  Human Brain Function , 1997 .

[14]  Koenraad Van Leemput,et al.  Quantification of Cerebral Grey and White Matter Asymmetry from MRI , 1999, MICCAI.

[15]  W. Eric L. Grimson,et al.  Segmentation of brain tissue from magnetic resonance images , 1995, Medical Image Anal..

[16]  William H. Press,et al.  Numerical recipes in C , 2002 .

[17]  M. Hallett Human Brain Function , 1998, Trends in Neurosciences.

[18]  W. Eric L. Grimson,et al.  Adaptive Segmentation of MRI Data , 1995, CVRMed.

[19]  Jean Serra,et al.  Image Analysis and Mathematical Morphology , 1983 .

[20]  M. Stella Atkins,et al.  Fully automatic segmentation of the brain in MRI , 1998, IEEE Transactions on Medical Imaging.

[21]  David A. Rottenberg,et al.  Semi-automated stripping of T1 MRI volumes: I. Consensus of intensity-and edge-based methods , 1999 .

[22]  Anders M. Dale,et al.  Cortical Surface-Based Analysis I. Segmentation and Surface Reconstruction , 1999, NeuroImage.

[23]  Nick C Fox,et al.  Interactive algorithms for the segmentation and quantitation of 3-D MRI brain scans. , 1997, Computer methods and programs in biomedicine.

[24]  Alan C. Evans,et al.  BrainWeb: Online Interface to a 3D MRI Simulated Brain Database , 1997 .

[25]  R. Kikinis,et al.  Routine quantitative analysis of brain and cerebrospinal fluid spaces with MR imaging , 1992, Journal of magnetic resonance imaging : JMRI.