Progressive parallel coordinates

Progressive refinement is a methodology that makes it possible to elegantly integrate scalable data compression, access, and presentation into one approach. Specifically, this paper concerns the effective use of progressive parallel coordinates (PPCs), utilized routinely for high-dimensional data visualization. It discusses how the power of the typical stages of progressive data visualization can also be utilized fully for PPCs. Further, different implementations of the underlying methods and potential application domains are described. The paper also presents empirical results concerning the benefits of PPC with regard to efficient data management and improved presentation, indicating that the proposed approach is able to close the gap between data handling and visualization.

[1]  Matthew O. Ward,et al.  Hierarchical parallel coordinates for exploration of large datasets , 1999, Proceedings Visualization '99 (Cat. No.99CB37067).

[2]  Pat Hanrahan,et al.  Hierarchical splatting: a progressive refinement algorithm for volume rendering , 1991, SIGGRAPH.

[3]  Stefan Berchtold,et al.  Similarity clustering of dimensions for an enhanced visualization of multidimensional data , 1998, Proceedings IEEE Symposium on Information Visualization (Cat. No.98TB100258).

[4]  Bernd Hamann,et al.  A flexible low-complexity device adaptation approach for data presentation , 2011, Electronic Imaging.

[5]  Shenghuo Zhu,et al.  A survey on wavelet applications in data mining , 2002, SKDD.

[6]  Matthew O. Ward,et al.  Visual Hierarchical Dimension Reduction for Exploration of High Dimensional Datasets , 2003, VisSym.

[7]  Pak Chung Wong,et al.  Multiresolution multidimensional wavelet brushing , 1996, Proceedings of Seventh Annual IEEE Visualization '96.

[8]  Jean-Daniel Fekete,et al.  Hierarchical Aggregation for Information Visualization: Overview, Techniques, and Design Guidelines , 2010, IEEE Transactions on Visualization and Computer Graphics.

[9]  Hugues Hoppe,et al.  Progressive meshes , 1996, SIGGRAPH.

[11]  Alfred Inselberg,et al.  Parallel Coordinates: Visual Multidimensional Geometry and Its Applications , 2003, KDIR.

[12]  Hong Zhou,et al.  Visual Clustering in Parallel Coordinates , 2008, Comput. Graph. Forum.

[13]  Alan J. Dix,et al.  A Taxonomy of Clutter Reduction for Information Visualisation , 2007, IEEE Transactions on Visualization and Computer Graphics.

[14]  Helwig Hauser,et al.  Outlier-Preserving Focus+Context Visualization in Parallel Coordinates , 2006, IEEE Transactions on Visualization and Computer Graphics.

[15]  Y.-Kheong Chee Survey of progressive image transmission methods , 1999, Int. J. Imaging Syst. Technol..

[16]  Heidrun Schumann,et al.  Progressive refinement: more than a means to overcome limited bandwidth , 2009, Electronic Imaging.

[17]  Jeffrey Heer,et al.  Narrative Visualization: Telling Stories with Data , 2010, IEEE Transactions on Visualization and Computer Graphics.

[18]  Mats Lind,et al.  Perceiving Patterns in Parallel Coordinates: Determining Thresholds for Identification of Relationships , 2008, Inf. Vis..

[19]  Matthew O. Ward,et al.  Interactive hierarchical displays: a general framework for visualization and exploration of large multivariate data sets , 2003, Comput. Graph..

[20]  Jeffrey Heer,et al.  prefuse: a toolkit for interactive information visualization , 2005, CHI.

[21]  Michael Deering,et al.  Geometry compression , 1995, SIGGRAPH.