Lagrange-Type Functions in Constrained Optimization
暂无分享,去创建一个
[1] J. Burke. An exact penalization viewpoint of constrained optimization , 1991 .
[2] X. X. Huang,et al. A Nonlinear Lagrangian Approach to Constrained Optimization Problems , 2000, SIAM J. Optim..
[3] Dimitri P. Bertsekas,et al. Nonlinear Programming , 1997 .
[4] V. L. Makarov,et al. Mathematical Economic Theory: Pure and Mixed Types of Economic Mechanisms , 1995 .
[5] Adil M. Bagirov,et al. Cutting Angle Method and a Local Search , 2003, J. Glob. Optim..
[6] A. Ioffe. Necessary and Sufficient Conditions for a Local Minimum. 3: Second Order Conditions and Augmented Duality , 1979 .
[7] C. Goh,et al. Nonlinear Lagrangian Theory for Nonconvex Optimization , 2001 .
[8] Xiaoqi Yang,et al. An Exterior Point Method for Computing Points That Satisfy Second-Order Necessary Conditions for a C1,1 Optimization Problem , 1994 .
[9] H. Weinert. Ekeland, I. / Temam, R., Convex Analysis and Variational Problems. Amsterdam‐Oxford. North‐Holland Publ. Company. 1976. IX, 402 S., Dfl. 85.00. US $ 29.50 (SMAA 1) , 1979 .
[10] Xiaoqi Yang,et al. Duality and Exact Penalization for Vector Optimization via Augmented Lagrangian , 2001 .
[11] X. Q. Yang,et al. Nonlinear Lagrange Duality Theorems and Penalty Function Methods In Continuous Optimization , 2003, J. Glob. Optim..
[12] J. Hiriart-Urruty,et al. Generalized Hessian matrix and second-order optimality conditions for problems withC1,1 data , 1984 .
[13] V. G. Zhadan,et al. Exact auxiliary functions in optimization problems , 1991 .
[14] I. Singer. Abstract Convex Analysis , 1997 .
[15] X. Q. Yang,et al. Approximate Optimal Solutions and Nonlinear Lagrangian Functions* , 2001, J. Glob. Optim..
[16] A. Rubinov. Abstract Convexity and Global Optimization , 2000 .
[17] Xiaoqi Yang,et al. Modified Lagrangian and Least Root Approaches for General Nonlinear Optimization Problems , 2002 .
[18] Mokhtar S. Bazaraa,et al. Nonlinear Programming: Theory and Algorithms , 1993 .
[19] A. Ben-Tal,et al. Necessary and sufficient optimality conditions for a class of nonsmooth minimization problems , 1982, Math. Program..
[20] C. Goh,et al. A sufficient and necessary condition for nonconvex constrained optimization , 1997 .
[21] F. Clarke. Optimization And Nonsmooth Analysis , 1983 .
[22] Vitali G. Zhadan,et al. General lagrange-type functions in constrained global optimization Part I: auxiliary functions and optimality conditions , 2001 .
[23] Roberto Cominetti,et al. Asymptotic Analysis for Penalty and Barrier Methods in Convex and Linear Programming , 1997, Math. Oper. Res..
[24] Xiaoqi Yang,et al. Extended Lagrange and Penalty Functions in Optimization , 2001 .
[25] Alfred Auslender. Penalty and Barrier Methods: A Unified Framework , 1999, SIAM J. Optim..
[26] Xiaoqi Yang. Second-order global optimality conditions for convex composite optimization , 1998, Math. Program..
[27] Xiaoqi Yang,et al. A Unified Augmented Lagrangian Approach to Duality and Exact Penalization , 2003, Math. Oper. Res..
[28] Bethany L. Nicholson,et al. Mathematical Programs with Equilibrium Constraints , 2021, Pyomo — Optimization Modeling in Python.
[29] Xiaoqi Yang,et al. Extended Lagrange And Penalty Functions in Continuous Optimization , 1999 .
[30] János D. Pintér,et al. Global optimization in action , 1995 .
[31] R. Tyrrell Rockafellar,et al. Lagrange Multipliers and Optimality , 1993, SIAM Rev..
[32] I. Ekeland,et al. Convex analysis and variational problems , 1976 .
[33] I. Singer. Some general Lagrangian duality theorems , 1989 .
[34] Duan Li,et al. Value-Estimation Function Method for Constrained Global Optimization , 1999 .
[35] Alexander Rubinov,et al. Lipschitz programming via increasing convex-along-rays functions * , 1999 .
[36] J D Pinter,et al. Global Optimization in Action—Continuous and Lipschitz Optimization: Algorithms, Implementations and Applications , 2010 .
[37] Jong-Shi Pang,et al. Error bounds in mathematical programming , 1997, Math. Program..
[38] Vitali G. Zhadan,et al. General lagrange-type functions in constrained global optimization part II: Exact auxiliary functions , 2001 .
[39] F. Giannessi. Theorems of the alternative and optimality conditions , 1984 .
[40] F. Giannessi,et al. On the Theory of Vector Optimization and Variational Inequalities. Image Space Analysis and Separation , 2000 .
[41] James V. Burke,et al. Calmness and exact penalization , 1991 .
[42] Rafail N. Gasimov,et al. Augmented Lagrangian Duality and Nondifferentiable Optimization Methods in Nonconvex Programming , 2002, J. Glob. Optim..
[43] X. Q. Yang,et al. Nonlinear Lagrangian for Multiobjective Optimization and Applications to Duality and Exact Penalization , 2002, SIAM J. Optim..
[44] X. Q. Yang,et al. Decreasing Functions with Applications to Penalization , 1999, SIAM J. Optim..
[45] R. Rockafellar. Augmented Lagrange Multiplier Functions and Duality in Nonconvex Programming , 1974 .
[46] Adil M. Bagirov,et al. Global Minimization of Increasing Positively Homogeneous Functions over the Unit Simplex , 2000, Ann. Oper. Res..
[47] C. Floudas. Handbook of Test Problems in Local and Global Optimization , 1999 .
[48] J. Borwein,et al. A smooth variational principle with applications to subdifferentiability and to differentiability of convex functions , 1987 .
[49] A. Rubinov,et al. On Global Optimality Conditions via Separation Functions , 2001 .