Lagrange-Type Functions in Constrained Optimization

[1]  J. Burke An exact penalization viewpoint of constrained optimization , 1991 .

[2]  X. X. Huang,et al.  A Nonlinear Lagrangian Approach to Constrained Optimization Problems , 2000, SIAM J. Optim..

[3]  Dimitri P. Bertsekas,et al.  Nonlinear Programming , 1997 .

[4]  V. L. Makarov,et al.  Mathematical Economic Theory: Pure and Mixed Types of Economic Mechanisms , 1995 .

[5]  Adil M. Bagirov,et al.  Cutting Angle Method and a Local Search , 2003, J. Glob. Optim..

[6]  A. Ioffe Necessary and Sufficient Conditions for a Local Minimum. 3: Second Order Conditions and Augmented Duality , 1979 .

[7]  C. Goh,et al.  Nonlinear Lagrangian Theory for Nonconvex Optimization , 2001 .

[8]  Xiaoqi Yang,et al.  An Exterior Point Method for Computing Points That Satisfy Second-Order Necessary Conditions for a C1,1 Optimization Problem , 1994 .

[9]  H. Weinert Ekeland, I. / Temam, R., Convex Analysis and Variational Problems. Amsterdam‐Oxford. North‐Holland Publ. Company. 1976. IX, 402 S., Dfl. 85.00. US $ 29.50 (SMAA 1) , 1979 .

[10]  Xiaoqi Yang,et al.  Duality and Exact Penalization for Vector Optimization via Augmented Lagrangian , 2001 .

[11]  X. Q. Yang,et al.  Nonlinear Lagrange Duality Theorems and Penalty Function Methods In Continuous Optimization , 2003, J. Glob. Optim..

[12]  J. Hiriart-Urruty,et al.  Generalized Hessian matrix and second-order optimality conditions for problems withC1,1 data , 1984 .

[13]  V. G. Zhadan,et al.  Exact auxiliary functions in optimization problems , 1991 .

[14]  I. Singer Abstract Convex Analysis , 1997 .

[15]  X. Q. Yang,et al.  Approximate Optimal Solutions and Nonlinear Lagrangian Functions* , 2001, J. Glob. Optim..

[16]  A. Rubinov Abstract Convexity and Global Optimization , 2000 .

[17]  Xiaoqi Yang,et al.  Modified Lagrangian and Least Root Approaches for General Nonlinear Optimization Problems , 2002 .

[18]  Mokhtar S. Bazaraa,et al.  Nonlinear Programming: Theory and Algorithms , 1993 .

[19]  A. Ben-Tal,et al.  Necessary and sufficient optimality conditions for a class of nonsmooth minimization problems , 1982, Math. Program..

[20]  C. Goh,et al.  A sufficient and necessary condition for nonconvex constrained optimization , 1997 .

[21]  F. Clarke Optimization And Nonsmooth Analysis , 1983 .

[22]  Vitali G. Zhadan,et al.  General lagrange-type functions in constrained global optimization Part I: auxiliary functions and optimality conditions , 2001 .

[23]  Roberto Cominetti,et al.  Asymptotic Analysis for Penalty and Barrier Methods in Convex and Linear Programming , 1997, Math. Oper. Res..

[24]  Xiaoqi Yang,et al.  Extended Lagrange and Penalty Functions in Optimization , 2001 .

[25]  Alfred Auslender Penalty and Barrier Methods: A Unified Framework , 1999, SIAM J. Optim..

[26]  Xiaoqi Yang Second-order global optimality conditions for convex composite optimization , 1998, Math. Program..

[27]  Xiaoqi Yang,et al.  A Unified Augmented Lagrangian Approach to Duality and Exact Penalization , 2003, Math. Oper. Res..

[28]  Bethany L. Nicholson,et al.  Mathematical Programs with Equilibrium Constraints , 2021, Pyomo — Optimization Modeling in Python.

[29]  Xiaoqi Yang,et al.  Extended Lagrange And Penalty Functions in Continuous Optimization , 1999 .

[30]  János D. Pintér,et al.  Global optimization in action , 1995 .

[31]  R. Tyrrell Rockafellar,et al.  Lagrange Multipliers and Optimality , 1993, SIAM Rev..

[32]  I. Ekeland,et al.  Convex analysis and variational problems , 1976 .

[33]  I. Singer Some general Lagrangian duality theorems , 1989 .

[34]  Duan Li,et al.  Value-Estimation Function Method for Constrained Global Optimization , 1999 .

[35]  Alexander Rubinov,et al.  Lipschitz programming via increasing convex-along-rays functions * , 1999 .

[36]  J D Pinter,et al.  Global Optimization in Action—Continuous and Lipschitz Optimization: Algorithms, Implementations and Applications , 2010 .

[37]  Jong-Shi Pang,et al.  Error bounds in mathematical programming , 1997, Math. Program..

[38]  Vitali G. Zhadan,et al.  General lagrange-type functions in constrained global optimization part II: Exact auxiliary functions , 2001 .

[39]  F. Giannessi Theorems of the alternative and optimality conditions , 1984 .

[40]  F. Giannessi,et al.  On the Theory of Vector Optimization and Variational Inequalities. Image Space Analysis and Separation , 2000 .

[41]  James V. Burke,et al.  Calmness and exact penalization , 1991 .

[42]  Rafail N. Gasimov,et al.  Augmented Lagrangian Duality and Nondifferentiable Optimization Methods in Nonconvex Programming , 2002, J. Glob. Optim..

[43]  X. Q. Yang,et al.  Nonlinear Lagrangian for Multiobjective Optimization and Applications to Duality and Exact Penalization , 2002, SIAM J. Optim..

[44]  X. Q. Yang,et al.  Decreasing Functions with Applications to Penalization , 1999, SIAM J. Optim..

[45]  R. Rockafellar Augmented Lagrange Multiplier Functions and Duality in Nonconvex Programming , 1974 .

[46]  Adil M. Bagirov,et al.  Global Minimization of Increasing Positively Homogeneous Functions over the Unit Simplex , 2000, Ann. Oper. Res..

[47]  C. Floudas Handbook of Test Problems in Local and Global Optimization , 1999 .

[48]  J. Borwein,et al.  A smooth variational principle with applications to subdifferentiability and to differentiability of convex functions , 1987 .

[49]  A. Rubinov,et al.  On Global Optimality Conditions via Separation Functions , 2001 .