Portfolio value-at-risk estimation in energy futures markets with time-varying copula-GARCH model

This paper combines copula functions with GARCH-type models to construct the conditional joint distribution, which is used to estimate Value-at-Risk (VaR) of an equally weighted portfolio comprising crude oil futures and natural gas futures in energy market. Both constant and time-varying copulas are applied to fit the dependence structure of the two assets returns. The findings show that the constant Student t copula is a good compromise for effectively fitting the dependence structure between crude oil futures and natural gas futures. Moreover, the skewed Student t distribution has a better fit than Normal and Student t distribution to the marginal distribution of each asset. Asymmetries and excess kurtosis are found in marginal distributions as well as in dependence. We estimate VaR of the underlying portfolio to be 95% and 99%, by using the Monte Carlo simulation. Then using backtesting, we compare the out-of-sample forecasting performances of VaR estimated by different models.

[1]  Jean-David Fermanian,et al.  Goodness-of-fit tests for copulas , 2005 .

[2]  M. Rockinger,et al.  The Copula-GARCH model of conditional dependencies: An international stock market application , 2006 .

[3]  Andrew J. Patton Modelling Asymmetric Exchange Rate Dependence , 2006 .

[4]  Anne-Catherine Favre,et al.  Bayesian copula selection , 2006, Comput. Stat. Data Anal..

[5]  Bruxelles Palais des Académies Bulletin de la Classe des sciences. , 1973 .

[6]  Andrew J. Patton Applications of copula theory in financial econometrics , 2002 .

[7]  Andrea Bastianin Modelling Asymmetric Dependence Using Copula Functions: An Application to Value-at-Risk in the Energy Sector , 2009 .

[8]  Beatriz Vaz de Melo Mendes,et al.  Measuring financial risks with copulas , 2004 .

[9]  Campbell R. Harvey,et al.  Conditional Skewness in Asset Pricing Tests , 1999 .

[10]  Guofu Zhou,et al.  Asymmetries in Stock Returns: Statistical Tests and Economic Evaluation , 2003 .

[11]  P. Embrechts,et al.  Risk Management: Correlation and Dependence in Risk Management: Properties and Pitfalls , 2002 .

[12]  Thierry Roncalli,et al.  Which Copula is the Right One? , 2000 .

[13]  Tim Bollerslev,et al.  Chapter 49 Arch models , 1994 .

[14]  H. Akaike,et al.  Information Theory and an Extension of the Maximum Likelihood Principle , 1973 .

[15]  G. Schwarz Estimating the Dimension of a Model , 1978 .

[16]  Andrew J. Patton (IAM Series No 001) On the Out-Of-Sample Importance of Skewness and Asymetric Dependence for Asset Allocation , 2002 .

[17]  Jose A. Lopez,et al.  Methods for Evaluating Value-at-Risk Estimates , 1998 .

[18]  P. Embrechts,et al.  Quantitative Risk Management: Concepts, Techniques, and Tools , 2005 .

[19]  Dean Fantazzini Dynamic Copula Modelling for Value at Risk , 2006 .

[20]  Stoyan V. Stoyanov,et al.  Stochastic models for risk estimation in volatile markets: a survey , 2008, Ann. Oper. Res..

[21]  Alexandra da Costa Dias Copula inference for finance and insurance , 2004 .

[22]  R. Fisher Statistical methods for research workers , 1927, Protoplasma.

[23]  M. Rosenblatt Remarks on a Multivariate Transformation , 1952 .

[24]  David J. Ball,et al.  Deliberating Over Britain's Nuclear Waste , 2006 .

[25]  Peter F. Christoffersen Evaluating Interval Forecasts , 1998 .

[26]  B. Rémillard,et al.  Goodness-of-fit tests for copulas: A review and a power study , 2006 .

[27]  R. Fisher,et al.  Statistical Methods for Research Workers , 1930, Nature.

[28]  Tae-Hwy Lee,et al.  Forecasting volatility: A reality check based on option pricing, utility function, value-at-risk, and predictive likelihood , 2004 .

[29]  Alan G. White,et al.  Value at Risk When Daily Changes in Market Variables are not Normally Distributed , 1998 .

[30]  S. T. Buckland,et al.  An Introduction to the Bootstrap. , 1994 .

[31]  Paul H. Kupiec,et al.  Techniques for Verifying the Accuracy of Risk Measurement Models , 1995 .

[32]  Sean D. Campbell A review of backtesting and backtesting procedures , 2005 .

[33]  Andrew Ang,et al.  Asymmetric Correlations of Equity Portfolios , 2001 .

[34]  E. Luciano,et al.  Copula Methods in Finance: Cherubini/Copula , 2004 .

[35]  Anthony S. Tay,et al.  Evaluating Density Forecasts with Applications to Financial Risk Management , 1998 .

[36]  Thorsten Rheinländer Risk Management: Value at Risk and Beyond , 2003 .

[37]  Andrew J. Patton Estimation of multivariate models for time series of possibly different lengths , 2006 .

[38]  E. Luciano,et al.  Copula methods in finance , 2004 .

[39]  L. Glosten,et al.  On the Relation between the Expected Value and the Volatility of the Nominal Excess Return on Stocks , 1993 .

[40]  B. Hansen Autoregressive Conditional Density Estimation , 1994 .

[41]  R. Engle Autoregressive conditional heteroscedasticity with estimates of the variance of United Kingdom inflation , 1982 .

[42]  Phhilippe Jorion Value at Risk: The New Benchmark for Managing Financial Risk , 2000 .

[43]  H. Joe Multivariate models and dependence concepts , 1998 .

[44]  M. Sklar Fonctions de repartition a n dimensions et leurs marges , 1959 .