Mixed hierarchy of soliton equations
暂无分享,去创建一个
[1] A. Kundu,et al. Nonholonomic deformation of KdV and mKdV equations and their symmetries, hierarchies and integrability , 2008, 0811.0924.
[2] R. Sahadevan,et al. Similarity reduction, nonlocal and master symmetries of sixth order Korteweg-deVries equation , 2009 .
[3] W. Ma. An approach for constructing nonisospectral hierarchies of evolution equations , 1992 .
[4] Xianguo Geng,et al. Algebro-geometric solution of the 2+1 dimensional Burgers equation with a discrete variable , 2002 .
[5] E. Fan. The zero curvature representation for hierarchies of nonlinear evolution equations , 2000 .
[6] V. Lychagin,et al. Differential Equations - Geometry, Symmetries and Integrability , 2009 .
[7] Alan C. Newell,et al. Solitons in mathematics and physics , 1987 .
[8] Z. Qiao. Negative order MKdV hierarchy and a new integrable Neumann-like system , 2002, nlin/0201065.
[9] A. Kundu. Exact accelerating solitons in nonholonomic deformation of the KdV equation with a two-fold integrable hierarchy , 2008, 0806.2743.
[10] B. Kupershmidt,et al. KdV6: An integrable system , 2007, 0709.3848.
[11] O. Ragnisco,et al. On the relation of the stationary Toda equation and the symplectic maps , 1995 .
[12] Yuqin Yao,et al. The Bi-Hamiltonian Structure and New Solutions of KdV6 Equation , 2008, 0810.1986.
[13] Andrew Lenard: A Mystery Unraveled , 2005, nlin/0510055.
[14] Kimiaki Konno,et al. Effect of Weak Dislocation Potential on Nonlinear Wave Propagation in Anharmonic Crystal , 1974 .
[15] Sergei Sakovich,et al. A new integrable generalization of the Korteweg–de Vries equation , 2007, 0708.3247.
[16] Ruguang Zhou,et al. Hierarchy of negative order equation and its Lax pair , 1995 .
[17] A. Kundu. Nonlinearizing linear equations to integrable systems including new hierarchies with nonholonomic deformations , 2007, 0711.0878.
[18] Vladimir E. Zakharov,et al. The Inverse Scattering Method , 1980 .