Mixed hierarchy of soliton equations

The mixed hierarchy of soliton equations in (1+1) dimensions is introduced. It contains nonholonomic deformations of soliton equations such the KdV6 equation and the Kupershmidt deformations of soliton equations as special members. Based on the commutator representation method, a recipe for constructing zero curvature representations of mixed hierarchy is proposed. As applications, we obtain the mixed hierarchies and their zero curvature representations for the Korteweg–de Vries hierarchy, the Ablowitz–Kaup–Newell–Segur hierarchy, the modified Korteweg–de Vries hierarchy, the Toda lattice hierarchy, and the Volterra lattice hierarchy.

[1]  A. Kundu,et al.  Nonholonomic deformation of KdV and mKdV equations and their symmetries, hierarchies and integrability , 2008, 0811.0924.

[2]  R. Sahadevan,et al.  Similarity reduction, nonlocal and master symmetries of sixth order Korteweg-deVries equation , 2009 .

[3]  W. Ma An approach for constructing nonisospectral hierarchies of evolution equations , 1992 .

[4]  Xianguo Geng,et al.  Algebro-geometric solution of the 2+1 dimensional Burgers equation with a discrete variable , 2002 .

[5]  E. Fan The zero curvature representation for hierarchies of nonlinear evolution equations , 2000 .

[6]  V. Lychagin,et al.  Differential Equations - Geometry, Symmetries and Integrability , 2009 .

[7]  Alan C. Newell,et al.  Solitons in mathematics and physics , 1987 .

[8]  Z. Qiao Negative order MKdV hierarchy and a new integrable Neumann-like system , 2002, nlin/0201065.

[9]  A. Kundu Exact accelerating solitons in nonholonomic deformation of the KdV equation with a two-fold integrable hierarchy , 2008, 0806.2743.

[10]  B. Kupershmidt,et al.  KdV6: An integrable system , 2007, 0709.3848.

[11]  O. Ragnisco,et al.  On the relation of the stationary Toda equation and the symplectic maps , 1995 .

[12]  Yuqin Yao,et al.  The Bi-Hamiltonian Structure and New Solutions of KdV6 Equation , 2008, 0810.1986.

[13]  Andrew Lenard: A Mystery Unraveled , 2005, nlin/0510055.

[14]  Kimiaki Konno,et al.  Effect of Weak Dislocation Potential on Nonlinear Wave Propagation in Anharmonic Crystal , 1974 .

[15]  Sergei Sakovich,et al.  A new integrable generalization of the Korteweg–de Vries equation , 2007, 0708.3247.

[16]  Ruguang Zhou,et al.  Hierarchy of negative order equation and its Lax pair , 1995 .

[17]  A. Kundu Nonlinearizing linear equations to integrable systems including new hierarchies with nonholonomic deformations , 2007, 0711.0878.

[18]  Vladimir E. Zakharov,et al.  The Inverse Scattering Method , 1980 .