Review of research on salt-affected soils in the Debrecen agricultural high educational institutions, with special focus on the mapping of Hortobágy

The history of the research of Debrecen scholars on salt-affected soils of Hortobágy and the region is very rich and diverse. Focusing on mapping, the following stages can be distinguished, indicating the completeness of the maps and the purpose of the performed work− First, quantitative maps (Arany, 1926) for the utilization of the lands at 1:75,000 (Figure 1).− Second, quantitative map (Kreybig, 1943) for the utilization of the lands at 1:25,000.− Third, category map (Kreybig et al., 1935) testing the suitability of the classification system at  :75,000.− Fourth, partial category map (Szabolcs, 1954), showing the reasons of unsuccessful management at 1:10,000.− Fifth, partial quantitative map (Csillag et al., 1996), showing the utility of digital sampling at 1:25,000.− Sixth, partial quantitative map (Tamás and Lénárt, 2006), showing the capacity of multispectral  remote imagery at 1:100.− Seventh, partial quantitative map (Douaik et al., 2006), showing the usefulness of geostatistical  mapping at 1:10,000.− Eight, national quantitative maps (Pásztor et al., 2016), showing the applicability of geostatistics for administrative purposes at 1:10,000.− Ninth, partial quantitative/category map (authors, 2019), finding the optimal methods at 1:10,000.

[1]  László Pásztor,et al.  Digital soil mapping for the support of delineation of Areas Facing Natural Constraints defined by common European biophysical criteria , 2016 .

[2]  T. Novák,et al.  Development of erosional microforms and soils on semi-natural and anthropogenic influenced solonetzic grasslands , 2016 .

[3]  Terres Jean,et al.  Updated Guidelines for Applying Common Criteria to Identify Agricultural Areas with Natural Constraints , 2016 .

[4]  A. I. Csathó,et al.  A hortobágyi Ecse-halom tájtörténete , 2015, Tájökológiai Lapok.

[5]  Suresh Kumar,et al.  Hyperspectral remote sensing data derived spectral indices in characterizing salt-affected soils: a case study of Indo-Gangetic plains of India , 2015, Environmental Earth Sciences.

[6]  J. Tamás,et al.  Surface runoff evaluation on a flat salt NATURA 2000 habitat site , 2014 .

[7]  Marc Van Meirvenne,et al.  Statistical Methods for Evaluating Soil Salinity Spatial and Temporal Variability , 2007 .

[8]  J. Tamás,et al.  Analysis of a small agricultural watershed using remote sensing techniques , 2006 .

[9]  J. Tamás,et al.  Substance regime processes depending on microrelief in a salt affected natural grassland , 2006 .

[10]  Zs. Szántó,et al.  A hortobágyi Csípő-halom talajtani vizsgálata , 2003 .

[11]  T. Tóth,et al.  Physicochemical properties of a solonetzic toposequence , 2002 .

[12]  G. Filep A szikes talajok javítóanyag-szükségletének becslésére alkalmas módszerek összehasonlítása , 2001 .

[13]  Csaba Tóth Síkvidéki mikroerózió szikes talajon Ágota-pusztán (Hortobágyi Nemzeti Park) , 2001 .

[14]  Ferenc Csillag,et al.  Sampling and Mapping of Heterogeneous Surfaces: Multi-Resolution Tiling Adjusted to Spatial Variability , 1996, Int. J. Geogr. Inf. Sci..

[15]  M. Kertész,et al.  Application of soil‐vegetation correlation to optimal resolution mapping of solonetzic rangeland , 1996 .

[16]  Kálmán Rajkai,et al.  SOIL AND PLANT CORRELATIONS IN A SOLONETZIC GRASSLAND , 1994 .

[17]  G. Várallyay Soil mapping in Hungary , 1989 .

[18]  H. E. Hayward,et al.  Plant Growth on Saline and Alkali Soils , 1949 .

[19]  J. B. The Principles of Soil Science , 1939, Nature.

[20]  E. Sigmond Hungarian alkali soils and methods of their reclamation , 1927 .