Approximation and online algorithms for multidimensional bin packing: A survey

Abstract The bin packing problem is a well-studied problem in combinatorial optimization. In the classical bin packing problem, we are given a list of real numbers in ( 0 , 1 ] and the goal is to place them in a minimum number of bins so that no bin holds numbers summing to more than 1. The problem is extremely important in practice and finds numerous applications in scheduling, routing and resource allocation problems. Theoretically the problem has rich connections with discrepancy theory, iterative methods, entropy rounding and has led to the development of several algorithmic techniques. In this survey we consider approximation and online algorithms for several classical generalizations of bin packing problem such as geometric bin packing, vector bin packing and various other related problems. There is also a vast literature on mathematical models and exact algorithms for bin packing. However, this survey does not address such exact algorithms. In two-dimensional geometric bin packing , we are given a collection of rectangular items to be packed into a minimum number of unit size square bins. This variant has a lot of applications in cutting stock, vehicle loading, pallet packing, memory allocation and several other logistics and robotics related problems. In d -dimensional vector bin packing , each item is a d -dimensional vector that needs to be packed into unit vector bins. This problem is of great significance in resource constrained scheduling and in recent virtual machine placement in cloud computing. We also consider several other generalizations of bin packing such as geometric knapsack, strip packing and other related problems such as vector scheduling, vector covering etc. We survey algorithms for these problems in offline and online setting, and also mention results for several important special cases. We briefly mention related techniques used in the design and analysis of these algorithms. In the end we conclude with a list of open problems.

[1]  Klaus Jansen,et al.  Improved Approximation for Two Dimensional Strip Packing with Polynomial Bounded Width , 2017, WALCOM.

[2]  Arindam Khan,et al.  Approximation algorithms for multidimensional bin packing , 2015 .

[3]  Sergey Vasil'evich Sevast'janov,et al.  on Some Geometric Methods in Scheduling Theory: A Survey , 1994, Discret. Appl. Math..

[4]  Jeffrey D. Ullman,et al.  Worst-Case Performance Bounds for Simple One-Dimensional Packing Algorithms , 1974, SIAM J. Comput..

[5]  Claire Mathieu,et al.  On the Sum-of-Squares algorithm for bin packing , 2002, JACM.

[6]  Brian Brubach,et al.  Improved Bound for Online Square-into-Square Packing , 2014, WAOA.

[7]  Jeffrey D. Ullman,et al.  Worst-case analysis of memory allocation algorithms , 1972, STOC.

[8]  Fabrizio Grandoni,et al.  Improved Pseudo-Polynomial-Time Approximation for Strip Packing , 2018, FSTTCS.

[9]  Andreas Wiese,et al.  Approximation Schemes for Maximum Weight Independent Set of Rectangles , 2013, 2013 IEEE 54th Annual Symposium on Foundations of Computer Science.

[10]  Richard M. Karp,et al.  An efficient approximation scheme for the one-dimensional bin-packing problem , 1982, 23rd Annual Symposium on Foundations of Computer Science (sfcs 1982).

[11]  Klaus Jansen,et al.  New Approximability Results for Two-Dimensional Bin Packing , 2014, Algorithmica.

[12]  Jirí Sgall,et al.  Optimal Analysis of Best Fit Bin Packing , 2014, ICALP.

[13]  Shaojie Tang,et al.  Smoothing the energy consumption: Peak demand reduction in smart grid , 2013, 2013 Proceedings IEEE INFOCOM.

[14]  Klaus Jansen,et al.  An asymptotic fully polynomial time approximation scheme for bin covering , 2003, Theor. Comput. Sci..

[15]  Klaus Jansen,et al.  Rectangle packing with one-dimensional resource augmentation , 2009, Discret. Optim..

[16]  Klaus Jansen,et al.  Maximizing the Number of Packed Rectangles , 2004, SWAT.

[17]  David S. Johnson,et al.  Approximation Algorithms for Bin-Packing — An Updated Survey , 1984 .

[18]  Maryna Viazovska,et al.  A breakthrough in sphere packing : the search for magic functions , 2016 .

[19]  Wenceslas Fernandez de la Vega,et al.  Bin packing can be solved within 1+epsilon in linear time , 1981, Comb..

[20]  Nikhil Bansal,et al.  Improved Approximation for Vector Bin Packing , 2016, SODA.

[21]  Klaus Jansen,et al.  A (5/3 + ε)-approximation for strip packing , 2014, Comput. Geom..

[22]  Jirí Sgall,et al.  The optimal absolute ratio for online bin packing , 2015, SODA.

[23]  Hans Kellerer,et al.  An approximation algorithm with absolute worst-case performance ratio 2 for two-dimensional vector packing , 2003, Oper. Res. Lett..

[24]  Zsolt Tuza,et al.  Tight absolute bound for First Fit Decreasing bin-packing: FFD(l) ≤ 11/9 OPT(L) + 6/9 , 2013, Theor. Comput. Sci..

[25]  Rob van Stee,et al.  Absolute approximation ratios for packing rectangles into bins , 2012, J. Sched..

[26]  D. S. Johnson,et al.  On Packing Two-Dimensional Bins , 1982 .

[27]  Giorgio Ausiello,et al.  Analysis and design of algorithms in combinatorial optimization , 1981 .

[28]  MonaciMichele,et al.  On the two-dimensional Knapsack Problem , 2004 .

[29]  Adrian Dumitrescu,et al.  Computational Geometry Column 60 , 2014, SIGA.

[30]  Jan Vondrák,et al.  Multi-budgeted matchings and matroid intersection via dependent rounding , 2011, SODA '11.

[31]  Vijay V. Vazirani,et al.  Approximation Algorithms , 2001, Springer Berlin Heidelberg.

[32]  Leah Epstein,et al.  Two Dimensional Packing: The Power of Rotation , 2003, MFCS.

[33]  Klaus Jansen,et al.  TwoForOneRevised Two for One : Tight approximation of 2 , 2013 .

[34]  Guochuan Zhang,et al.  A note on online strip packing , 2009, J. Comb. Optim..

[35]  Varun Gupta,et al.  Online Stochastic Bin Packing , 2012, ArXiv.

[36]  Leonid Khachiyan,et al.  Coordination Complexity of Parallel Price-Directive Decomposition , 1996, Math. Oper. Res..

[37]  Kam-Hoi Cheng,et al.  Heuristic Algorithms for On-Line Packing in Three Dimensions , 1992, J. Algorithms.

[38]  Daniele Vigo,et al.  Bin Packing Approximation Algorithms: Combinatorial Analysis , 1999, Handbook of Combinatorial Optimization.

[39]  János Csirik,et al.  An on-line algorithm for multidimensional bin packing , 1993, Oper. Res. Lett..

[40]  Klaus Jansen,et al.  A Structural Lemma in 2-Dimensional Packing, and Its Implications on Approximability , 2009, ISAAC.

[41]  Andrea Lodi,et al.  Two-dimensional packing problems: A survey , 2002, Eur. J. Oper. Res..

[42]  József Békési,et al.  New lower bounds for certain classes of bin packing algorithms , 2012, Theor. Comput. Sci..

[43]  Klaus Jansen,et al.  A New Asymptotic Approximation Algorithm for 3-Dimensional Strip Packing , 2014, SOFSEM.

[44]  David P. Williamson,et al.  The Design of Approximation Algorithms , 2011 .

[45]  Klaus Jansen,et al.  About the Structure of the Integer Cone and its Application to Bin Packing , 2016, SODA.

[46]  Rick Newby,et al.  For David S. , 1988 .

[47]  Carlos Eduardo Ferreira,et al.  Packing Squares into Squares , 1999 .

[48]  Andreas Wiese,et al.  Faster approximation schemes for the two-dimensional knapsack problem , 2017, SODA.

[49]  Gerhard J. Woeginger,et al.  A Lower Bound for On-Line Vector-Packing Algorithms , 1993, Acta Cybern..

[50]  Johann Hurink,et al.  Improved online algorithms for parallel job scheduling and strip packing , 2011, Theor. Comput. Sci..

[51]  Klaus Jansen,et al.  On strip packing With rotations , 2005, STOC '05.

[52]  Noga Alon,et al.  On-Line and Off-Line Approximation Algorithms for Vector Covering Problems , 1998, Algorithmica.

[53]  Klaus Jansen,et al.  Bin packing with fixed number of bins revisited , 2013, J. Comput. Syst. Sci..

[54]  Gerhard J. Woeginger,et al.  Shelf Algorithms for On-Line Strip Packing , 1997, Inf. Process. Lett..

[55]  Satoshi Fujita,et al.  Two-Dimensional On-Line Bin Packing Problem with Rotatable Items , 2000, COCOON.

[56]  Daniele Vigo,et al.  Bin packing approximation algorithms: Survey and classification , 2013 .

[57]  David B. Shmoys,et al.  A Polynomial Approximation Scheme for Scheduling on Uniform Processors: Using the Dual Approximation Approach , 1988, SIAM J. Comput..

[58]  Claire Mathieu,et al.  A Near-Optimal Solution to a Two-Dimensional Cutting Stock Problem , 2000, Math. Oper. Res..

[59]  Leah Epstein,et al.  Optimal Online Algorithms for Multidimensional Packing Problems , 2005, SIAM J. Comput..

[60]  Joseph Y.-T. Leung,et al.  On a Dual Version of the One-Dimensional Bin Packing Problem , 1984, J. Algorithms.

[61]  Brenda S. Baker,et al.  Lower bounds for on-line two-dimensional packing algorithms , 1982, Acta Informatica.

[62]  Leah Epstein,et al.  Bounds for online bounded space hypercube packing , 2007, Discret. Optim..

[63]  Susanne Albers,et al.  Better bounds for online scheduling , 1997, STOC '97.

[64]  B. Ram The pallet loading problem: A survey , 1992 .

[65]  Vincenzo Bonifaci,et al.  Scheduling Unrelated Machines of Few Different Types , 2012, ArXiv.

[66]  L. Lovász,et al.  Geometric Algorithms and Combinatorial Optimization , 1981 .

[67]  José R. Correa,et al.  Bin Packing in Multiple Dimensions: Inapproximability Results and Approximation Schemes , 2006, Math. Oper. Res..

[68]  Guochuan Zhang,et al.  Harmonic algorithm for 3-dimensional strip packing problem , 2007, SODA '07.

[69]  Gerhard J. Woeginger,et al.  The two-dimensional cutting stock problem revisited , 2005, Math. Program..

[70]  Enrico Pietrobuoni Two-Dimensional Bin Packing Problem with Guillotine Restrictions , 2015 .

[71]  Amos Fiat,et al.  On-line routing of virtual circuits with applications to load balancing and machine scheduling , 1997, JACM.

[72]  Allan Borodin,et al.  Online computation and competitive analysis , 1998 .

[73]  Steven S. Seiden,et al.  On the online bin packing problem , 2001, JACM.

[74]  Giorgi Nadiradze,et al.  On approximating strip packing with a better ratio than 3/2 , 2016, SODA.

[75]  Nikhil Bansal,et al.  Approximating Vector Scheduling: Almost Matching Upper and Lower Bounds , 2014, Algorithmica.

[76]  Rolf Harren,et al.  Improved Lower Bound for Online Strip Packing , 2013, Theory of Computing Systems.

[77]  Dorit S. Hochba,et al.  Approximation Algorithms for NP-Hard Problems , 1997, SIGA.

[78]  Nikhil Bansal,et al.  Improved Approximation Algorithm for Two-Dimensional Bin Packing , 2014, SODA.

[79]  Gerhard J. Woeginger,et al.  There is no Asymptotic PTAS for Two-Dimensional Vector Packing , 1997, Inf. Process. Lett..

[80]  Klaus Jansen,et al.  A Polynomial Time Approximation Scheme for the Square Packing Problem , 2008, IPCO.

[81]  Leah Epstein,et al.  This side up! , 2006, TALG.

[82]  Gerhard J. Woeginger,et al.  On-line bin packing — A restricted survey , 1995, Math. Methods Oper. Res..

[83]  Timothy M. Chan,et al.  Exact algorithms and APX-hardness results for geometric packing and covering problems , 2014, Comput. Geom..

[84]  Leah Epstein,et al.  Online square and cube packing , 2005, Acta Informatica.

[85]  Tamir Tassa,et al.  Vector assignment schemes for asymmetric settings , 2005, Acta Informatica.

[86]  Friedrich Eisenbrand,et al.  Bin packing via discrepancy of permutations , 2010, SODA '11.

[87]  Gerhard J. Woeginger,et al.  On-line Packing and Covering Problems , 1996, Online Algorithms.

[88]  Alessandro Panconesi,et al.  Completeness in Approximation Classes , 1989, Inf. Comput..

[89]  Igal Golan,et al.  Performance Bounds for Orthogonal Oriented Two-Dimensional Packing Algorithms , 1981, SIAM J. Comput..

[90]  Rob van Stee,et al.  Beating the Harmonic lower bound for online bin packing , 2015, ICALP.

[91]  Klaus Jansen,et al.  New Approximability Results for 2-Dimensional Packing Problems , 2007, MFCS.

[92]  Magnús M. Halldórsson,et al.  Lower bounds for on-line graph coloring , 1992, SODA '92.

[93]  Ronald L. Rivest,et al.  Orthogonal Packings in Two Dimensions , 1980, SIAM J. Comput..

[94]  Aleksandar Nikolov,et al.  Beck's Three Permutations Conjecture: A Counterexample and Some Consequences , 2012, 2012 IEEE 53rd Annual Symposium on Foundations of Computer Science.

[95]  Jeffrey D. Ullman,et al.  The performance of a memory allocation algorithm , 1971 .

[96]  C. Kenyon Best-fit bin-packing with random order , 1996, SODA '96.

[97]  Klaudia Frankfurter Computers And Intractability A Guide To The Theory Of Np Completeness , 2016 .

[98]  Krzysztof Onak,et al.  Polynomial approximation schemes for smoothed and random instances of multidimensional packing problems , 2007, SODA '07.

[99]  Andrew Chi-Chih Yao,et al.  New Algorithms for Bin Packing , 1978, JACM.

[100]  Guochuan Zhang,et al.  Approximate strip packing: Revisited , 2016, Inf. Comput..

[101]  J. B. G. Frenk,et al.  Two Simple Algorithms for bin Covering , 1999, Acta Cybern..

[102]  Yossi Azar,et al.  Online Lower Bounds via Duality , 2016, SODA.

[103]  Klaus Jansen Parameterized Approximation Scheme for the Multiple Knapsack Problem , 2009, SIAM J. Comput..

[104]  André van Vliet,et al.  An Improved Lower Bound for On-Line Bin Packing Algorithms , 1992, Inf. Process. Lett..

[105]  Mohit Singh,et al.  On Weighted Bipartite Edge Coloring , 2015, FSTTCS.

[106]  Joan Boyar,et al.  The Accommodating Function: A Generalization of the Competitive Ratio , 2001, SIAM J. Comput..

[107]  Andrea Lodi,et al.  A tale of two dimensional bin packing , 2005, 46th Annual IEEE Symposium on Foundations of Computer Science (FOCS'05).

[108]  Leah Epstein,et al.  Multidimensional Packing Problems , 2018, Handbook of Approximation Algorithms and Metaheuristics.

[109]  Eugene L. Lawler,et al.  Parameterized Approximation Scheme for the Multiple Knapsack Problem , 2009, SIAM J. Comput..

[110]  Eric Torng,et al.  Generating adversaries for request-answer games , 2000, SODA '00.

[111]  Hans Kellerer,et al.  Approximation algorithms for knapsack problems with cardinality constraints , 2000, Eur. J. Oper. Res..

[112]  Csaba D. Tóth,et al.  Packing anchored rectangles , 2015, Comb..

[113]  Rudolf Fleischer,et al.  Online Scheduling Revisited , 2000, ESA.

[114]  Thomas Rothvoß,et al.  The entropy rounding method in approximation algorithms , 2011, SODA.

[115]  David S. Johnson,et al.  Near-optimal bin packing algorithms , 1973 .

[116]  Rob van Stee,et al.  New bounds for multi-dimensional packing , 2002, SODA '02.

[117]  Yong Zhou,et al.  A note on online hypercube packing , 2010, Central Eur. J. Oper. Res..

[118]  Klaus Jansen,et al.  An EPTAS for Scheduling Jobs on Uniform Processors: Using an MILP Relaxation with a Constant Number of Integral Variables , 2009, SIAM J. Discret. Math..

[119]  Prabhakar Raghavan,et al.  Multidimensional on-line bin packing: Algorithms and worst-case analysis , 1989 .

[120]  A. Frieze,et al.  Approximation algorithms for the m-dimensional 0–1 knapsack problem: Worst-case and probabilistic analyses , 1984 .

[121]  Leah Epstein,et al.  Harmonic Algorithm for Bin Packing. , 2015 .

[122]  Sanjeev Arora,et al.  The Multiplicative Weights Update Method: a Meta-Algorithm and Applications , 2012, Theory Comput..

[123]  Leonid Khachiyan,et al.  Approximate Max-Min Resource Sharing for Structured Concave Optimization , 2000, SIAM J. Optim..

[124]  Thomas Rothvoß,et al.  Polynomiality for Bin Packing with a Constant Number of Item Types , 2013, SODA.

[125]  János Csirik,et al.  Online algorithms for a dual version of bin packing , 1988, Discret. Appl. Math..

[126]  Rob van Stee,et al.  SIGACT news online algorithms column 20: the power of harmony , 2012, SIGA.

[127]  Tamir Tassa,et al.  Vector assignment problems: a general framework , 2002, J. Algorithms.

[128]  Adam Meyerson,et al.  Online Multidimensional Load Balancing , 2013, APPROX-RANDOM.

[129]  Walter Kern,et al.  A tight analysis of Brown-Baker-Katseff sequences for online strip packing , 2010, CTW.

[130]  Andreas Wiese,et al.  Faster Approximation Schemes for the Two-Dimensional Knapsack Problem , 2019, ACM Trans. Algorithms.

[131]  Brenda S. Baker,et al.  Shelf Algorithms for Two-Dimensional Packing Problems , 1983, SIAM J. Comput..

[132]  Yoshiko Wakabayashi,et al.  Packing Problems with Orthogonal Rotations , 2004, LATIN.

[133]  Joseph Y.-T. Leung,et al.  Packing Squares into a Square , 1990, J. Parallel Distributed Comput..

[134]  Thomas Rothvoß,et al.  Approximating Bin Packing within O(log OPT * Log Log OPT) Bins , 2013, 2013 IEEE 54th Annual Symposium on Foundations of Computer Science.

[135]  Tjark Vredeveld Vector Scheduling Problems , 2016, Encyclopedia of Algorithms.

[136]  Robert E. Tarjan,et al.  Performance Bounds for Level-Oriented Two-Dimensional Packing Algorithms , 1980, SIAM J. Comput..

[137]  Guntram Scheithauer,et al.  Theoretical investigations on the modified integer round-up property for the one-dimensional cutting stock problem , 1997, Oper. Res. Lett..

[138]  Klaus Jansen An EPTAS for Scheduling Jobs on Uniform Processors: Using an MILP Relaxation with a Constant Number of Integral Variables , 2009, ICALP.

[139]  Shachar Lovett,et al.  Constructive Discrepancy Minimization by Walking on the Edges , 2012, 2012 IEEE 53rd Annual Symposium on Foundations of Computer Science.

[140]  Rina Panigrahy,et al.  Heuristics for Vector Bin Packing , 2011 .

[141]  Energia Elettrica,et al.  Two-Dimensional Bin Packing Problem with Guillotine Restrictions , 2015 .

[142]  Edward G. Coffman,et al.  A Tight Asymptotic Bound for Next-Fit-Decreasing Bin-Packing , 1981 .

[143]  H. Kellerer,et al.  Introduction to NP-Completeness of Knapsack Problems , 2004 .

[144]  Andrew Chi-Chih Yao,et al.  Resource Constrained Scheduling as Generalized Bin Packing , 1976, J. Comb. Theory A.

[145]  Rob van Stee,et al.  Packing Rectangles into 2OPT Bins Using Rotations , 2008, SWAT.

[146]  Giorgio Ausiello,et al.  Algorithm Design for Computer System Design , 1984, International Centre for Mechanical Sciences.

[147]  Nikhil Bansal,et al.  Two-dimensional bin packing with one-dimensional resource augmentation , 2007, Discret. Optim..

[148]  David R. Karger,et al.  A better algorithm for an ancient scheduling problem , 1994, SODA '94.

[149]  Alberto Caprara,et al.  Fast Approximation Schemes for Two-Stage, Two-Dimensional Bin Packing , 2005, Math. Oper. Res..

[150]  Susan Fera. Assmann Problems in discrete applied mathematics , 1983 .

[151]  J. B. G. Frenk,et al.  Probabilistic Analysis of Algorithms for Dual Bin Packing Problems , 1991, J. Algorithms.

[152]  Michal Pilipczuk,et al.  Hardness of Approximation for Strip Packing , 2017, TOCT.

[153]  Klaus Jansen,et al.  On Efficient Weighted Rectangle Packing with Large Resources , 2005, ISAAC.

[154]  Larry Shepp PROBABILISTIC ANALYSIS OF PACKING AND PARTITIONING ALGORITHMS , 1993 .

[155]  L. Moser,et al.  On packing of squares and cubes , 1968 .

[156]  A. Steinberg,et al.  A Strip-Packing Algorithm with Absolute Performance Bound 2 , 1997, SIAM J. Comput..

[157]  Rebecca Hoberg,et al.  A Logarithmic Additive Integrality Gap for Bin Packing , 2015, SODA.

[158]  Amos Fiat,et al.  Packing Small Vectors , 2016, SODA.

[159]  Amos Fiat,et al.  New algorithms for an ancient scheduling problem , 1992, STOC '92.

[160]  Friedrich Eisenbrand,et al.  Carathéodory bounds for integer cones , 2006, Oper. Res. Lett..

[161]  Frits C. R. Spieksma,et al.  A branch-and-bound algorithm for the two-dimensional vector packing problem , 1994, Comput. Oper. Res..

[162]  Edward G. Coffman,et al.  Probabilistic analysis of packing and partitioning algorithms , 1991, Wiley-Interscience series in discrete mathematics and optimization.

[163]  Daniel Dominic Sleator,et al.  A 2.5 Times Optimal Algorithm for Packing in Two Dimensions , 1980, Inf. Process. Lett..

[164]  Éva Tardos,et al.  Fast Approximation Algorithms for Fractional Packing and Covering Problems , 1995, Math. Oper. Res..

[165]  David S. Johnson,et al.  Approximation algorithms for combinatorial problems , 1973, STOC.

[166]  José R. Correa,et al.  On Guillotine Cutting Sequences , 2015, APPROX-RANDOM.

[167]  Alberto Caprara,et al.  On the two-dimensional Knapsack Problem , 2004, Oper. Res. Lett..

[168]  Janardhan Kulkarni,et al.  Tight Bounds for Online Vector Scheduling , 2014, 2015 IEEE 56th Annual Symposium on Foundations of Computer Science.

[169]  Rob van Stee,et al.  SIGACT News Online Algorithms Column 26: Bin packing in multiple dimensions , 2015, SIGA.

[170]  Alberto Caprara,et al.  Packing 2-dimensional bins in harmony , 2002, The 43rd Annual IEEE Symposium on Foundations of Computer Science, 2002. Proceedings..

[171]  Claire Mathieu,et al.  Better approximation algorithms for bin covering , 2001, SODA '01.

[172]  Eugene L. Lawler,et al.  Fast approximation algorithms for knapsack problems , 1977, 18th Annual Symposium on Foundations of Computer Science (sfcs 1977).

[173]  Steven Skiena,et al.  Who is interested in algorithms and why?: lessons from the Stony Brook algorithms repository , 1999, SIGA.

[174]  Susanne Albers,et al.  Online algorithms: a survey , 2003, Math. Program..

[175]  David S. Johnson,et al.  Approximation Algorithms for Bin Packing Problems: A Survey , 1981 .

[176]  Vangelis Th. Paschos,et al.  Differential Approximation Algorithms for Some Combinatorial Optimization Problems , 1998, Theor. Comput. Sci..

[177]  Subhash C. Sarin,et al.  Prototype models for two-dimensional layout design of robot systems , 1984 .

[178]  Ronald L. Graham,et al.  Bounds for certain multiprocessing anomalies , 1966 .

[179]  Leah Epstein,et al.  On variable sized vector packing , 2003, Acta Cybern..

[180]  Klaus Jansen,et al.  Maximizing the Total Profit of Rectangles Packed into a Rectangle , 2007, Algorithmica.

[181]  Alberto Caprara,et al.  A New Approximation Method for Set Covering Problems, with Applications to Multidimensional Bin Packing , 2009, SIAM J. Comput..

[182]  N. Alon,et al.  Approximation schemes for scheduling on parallel machines , 1998 .

[183]  Ioannis Lambadaris,et al.  Power strip packing of malleable demands in smart grid , 2013, 2013 IEEE International Conference on Communications (ICC).

[184]  Miroslav Chlebík,et al.  Inapproximability Results for Orthogonal Rectangle Packing Problems with Rotations , 2006, CIAC.

[185]  David B. Shmoys,et al.  Using dual approximation algorithms for scheduling problems: Theoretical and practical results , 1985, 26th Annual Symposium on Foundations of Computer Science (sfcs 1985).

[186]  G. S. Lueker,et al.  Bin packing can be solved within 1 + ε in linear time , 1981 .

[187]  Yossi Azar,et al.  Tight bounds for online vector bin packing , 2013, STOC '13.

[188]  Sartaj Sahni,et al.  Offline first fit scheduling in smart grids , 2015, 2015 IEEE Symposium on Computers and Communication (ISCC).

[189]  Yuval Rabani,et al.  A Better Lower Bound for On-Line Scheduling , 1994, Inf. Process. Lett..

[190]  Klaus Jansen,et al.  Approximation Algorithms for 3D Orthogonal Knapsack , 2007, Journal of Computer Science and Technology.

[191]  Guochuan Zhang,et al.  A 3-approximation algorithm for two-dimensional bin packing , 2005, Oper. Res. Lett..

[192]  Guochuan Zhang,et al.  A new upper bound 2.5545 on 2D Online Bin Packing , 2011, TALG.

[193]  Leah Epstein,et al.  Two-dimensional online bin packing with rotation , 2010, Theor. Comput. Sci..

[194]  R. Gomory,et al.  A Linear Programming Approach to the Cutting-Stock Problem , 1961 .

[195]  Rolf Harren,et al.  Improved Lower Bound for Online Strip Packing - (Extended Abstract) , 2011, WAOA.

[196]  Yoshiharu Kohayakawa,et al.  Multidimensional Cube Packing , 2001, Algorithmica.

[197]  Kam-Hoi Cheng,et al.  On Three-Dimensional Packing , 1990, SIAM J. Comput..

[198]  Rob van Stee,et al.  Improved Absolute Approximation Ratios for Two-Dimensional Packing Problems , 2009, APPROX-RANDOM.

[199]  Hadas Shachnai,et al.  There is no EPTAS for two-dimensional knapsack , 2010, Inf. Process. Lett..

[200]  Andreas Wiese,et al.  A quasi-PTAS for the Two-Dimensional Geometric Knapsack Problem , 2015, SODA.

[201]  Brenda S. Baker,et al.  A 5/4 Algorithm for Two-Dimensional Packing , 1981, J. Algorithms.

[202]  Ingo Schiermeyer,et al.  Reverse-Fit: A 2-Optimal Algorithm for Packing Rectangles , 1994, ESA.

[203]  Rob van Stee,et al.  Improved Lower Bounds for Online Hypercube Packing , 2016, ArXiv.

[204]  Peter W. Shor,et al.  How to pack better than best fit: tight bounds for average-case online bin packing , 1991, [1991] Proceedings 32nd Annual Symposium of Foundations of Computer Science.

[205]  J. Stephen Judd,et al.  The Loading Problem , 1990 .

[206]  Oscar H. Ibarra,et al.  Fast Approximation Algorithms for the Knapsack and Sum of Subset Problems , 1975, JACM.

[207]  D. T. Lee,et al.  A simple on-line bin-packing algorithm , 1985, JACM.

[208]  D. T. Lee,et al.  On-Line Bin Packing in Linear Time , 1989, J. Algorithms.

[209]  Jirí Sgall,et al.  First Fit bin packing: A tight analysis , 2013, STACS.

[210]  György Turán,et al.  On the performance of on-line algorithms for partition problems , 1989, Acta Cybern..

[211]  Joan Boyar,et al.  The relative worst order ratio for online algorithms , 2007, TALG.

[212]  Jakub Marecek,et al.  Handbook of Approximation Algorithms and Metaheuristics , 2010, Comput. J..