Expanding the utility of one-pot multistep reaction networks through compartmentation and recovery of the catalyst.

[1]  A. Bol,et al.  Magnetic catalyst bodies , 1999 .

[2]  K. Soda,et al.  Enantioselective synthesis of various D-amino acids by a multi-enzyme system , 1988 .

[3]  D. Avnir,et al.  One-pot sequences of reactions with sol-gel entrapped opposing reagents: an enzyme and metal-complex catalysts. , 2002, Journal of the American Chemical Society.

[4]  M. Makkee,et al.  Combined action of enzyme and metal catalyst, applied to the preparation of D-mannitol , 1980 .

[5]  R. Schoevaart,et al.  Application of Galactose Oxidase in Chemoenzymatic One-Pot Cascade Reactions Without Intermediate Recovery Steps , 2004 .

[6]  J. Bäckvall,et al.  Ruthenium- and enzyme-catalyzed dynamic kinetic resolution of secondary alcohols , 1999 .

[7]  Othmar Stelzer,et al.  A cartridge system for organometallic catalysis: sequential catalysis and separation using supercritical carbon dioxide to switch phases. , 2005, Angewandte Chemie.

[8]  G. Posner Multicomponent one-pot annulations forming 3 to 6 bonds , 1986 .

[9]  M. Burk,et al.  A Versatile Tandem Catalysis Procedure for the Preparation of Novel Amino Acids and Peptides , 1994 .

[10]  C. Wandrey,et al.  The Chemzyme Membrane Reactor in the Fine Chemicals Industry , 2001 .

[11]  Jin-Kyu Lee,et al.  Magnetic nanoparticles as a catalyst vehicle for simple and easy recycling , 2003 .

[12]  S V Ley,et al.  Solid-supported reagents for multi-step organic synthesis: preparation and application. , 2002, Farmaco.

[13]  L. Tietze,et al.  Sequentielle Transformationen in der Organischen Chemie eine Synthesestrategie mit Zukunft , 1993 .

[14]  A. Samia,et al.  Superparamagnetic Relaxation and Magnetic Anisotropy Energy Distribution in CoFe2O4 Spinel Ferrite Nanocrystallites , 1999 .

[15]  D. Avnir,et al.  One-Pot Reactions with Opposing Reagents: Sol−Gel Entrapped Catalyst and Base , 2000 .

[16]  J. Bäckvall,et al.  Enzymatic Resolution of Alcohols Coupled with Ruthenium‐Catalyzed Racemization of the Substrate Alcohol , 1997 .

[17]  Steven V. Ley,et al.  Total synthesis of the amaryllidaceae alkaloid (+)-plicamine and its unnatural enantiomer by using solid-supported reagents and scavengers in a multistep sequence of reactions. , 2002 .

[18]  R. Schoevaart,et al.  Combined catalytic conversion involving an enzyme, a homogeneous and a heterogeneous catalyst: one-pot preparation of 4-deoxy-d-glucose derivatives from d-galactose , 2002 .

[19]  Jan-E. Bäckvall,et al.  ENZYMATISCHE RACEMATSPALTUNG VON ALKOHOLEN GEKOPPELT MIT RUTHENIUM-KATALYSIERTER RACEMISIERUNG DES SUBSTRAT-ALKOHOLS , 1997 .

[20]  M. Makkee,et al.  Combined action of an enzyme and a metal catalyst on the conversion of d-glucose/d-fructose mixtures into d-mannitol , 1985 .

[21]  Hoon Han,et al.  Cooperative multi-catalyst systems for one-pot organic transformations. , 2004, Chemical Society reviews.

[22]  D. Avnir,et al.  One-pot sequences of reactions with sol-gel entrapped opposing reagents. Oxidations and catalytic reductions , 2003 .

[23]  W. Leitner,et al.  Ein Kartuschen-System für die metallorganische Katalyse: sequenzielle Katalyse und Stofftrennung mit überkritischem CO₂ zur Kontrolle der Löslichkeit , 2005 .

[24]  T. Lectka,et al.  Asymmetric catalysis on sequentially-linked columns. , 2001, Journal of the American Chemical Society.

[25]  Xingcan Shen,et al.  Synthesis and Characterization of 3-Aminopropyltriethoxysilane-Modified Superparamagnetic Magnetite Nanoparticles , 2004 .

[26]  E. V. Gorobets,et al.  Tandem transformations initiated and determined by the Michael reaction , 2001 .

[27]  R. Sheldon,et al.  Carbohydrates from glycerol: an enzymatic four-step, one-pot synthesis , 1999 .

[28]  G. Whitesides,et al.  Membrane-enclosed enzymic catalysis (MEEC): a useful, practical new method for the manipulation of enzymes in organic synthesis , 1987 .

[29]  Alle Bruggink,et al.  Concepts of Nature in Organic Synthesis: Cascade Catalysis and Multistep Conversions in Concert , 2003 .

[30]  Wolfgang Kroutil,et al.  Enzyme-initiated domino (cascade) reactions , 2001 .

[31]  D. Avnir,et al.  One-Pot Reactions with Sol-Gel Entrapped Catalysts, Acids and Bases , 2003 .

[32]  A. Bommarius,et al.  The membrane reactor in the fine chemicals industry , 2001 .

[33]  J Ovádi,et al.  Macromolecular compartmentation and channeling. , 2000, International review of cytology.

[34]  L. Tietze Domino Reactions in Organic Synthesis. , 1996, Chemical reviews.

[35]  Tamsyn Montagnon,et al.  Tandem reactions, cascade sequences, and biomimetic strategies in total synthesis. , 2003, Chemical communications.

[36]  R. Sheldon,et al.  A four-step enzymatic cascade for the one-pot synthesis of non-natural carbohydrates from glycerol. , 2000, The Journal of organic chemistry.

[37]  D. Avnir,et al.  Acids and Bases in One Pot while Avoiding Their Mutual Destruction , 2001 .

[38]  G. Whitesides,et al.  High-gradient magnetic filtration of small particles of ferro-, ferri-, and paramagnetic catalysts and catalyst supports , 1976 .

[39]  Steven V Ley,et al.  A total synthesis of epothilones using solid-supported reagents and scavengers. , 2003, Angewandte Chemie.

[40]  Wenbin Lin,et al.  Magnetically recoverable chiral catalysts immobilized on magnetite nanoparticles for asymmetric hydrogenation of aromatic ketones. , 2005, Journal of the American Chemical Society.

[41]  H. Dijkstra,et al.  The use of ultra- and nanofiltration techniques in homogeneous catalyst recycling. , 2002, Accounts of chemical research.

[42]  L. Tietze,et al.  Domino reactions for library synthesis of small molecules in combinatorial chemistry. , 1998, Current opinion in chemical biology.

[43]  C. Hawker,et al.  One-pot reaction cascades using star polymers with core-confined catalysts. , 2005, Angewandte Chemie.

[44]  Ken Motokura,et al.  An acidic layered clay is combined with a basic layered clay for one-pot sequential reactions. , 2005, Journal of the American Chemical Society.

[45]  C. R. Martin,et al.  Enantioseparation using apoenzymes immobilized in a porous polymeric membrane , 1997, Nature.

[46]  P. Parsons,et al.  Tandem Reactions in Organic Synthesis: Novel Strategies for Natural Product Elaboration and the Development of New Synthetic Methodology. , 1996, Chemical reviews.

[47]  Eckhard Bill,et al.  Nanoengineering of a magnetically separable hydrogenation catalyst. , 2004, Angewandte Chemie.

[48]  B Mattiasson,et al.  An immobilized three-enzyme system: a model for microenvironmental compartmentation in mitochondria. , 1973, Proceedings of the National Academy of Sciences of the United States of America.

[49]  Steven V Ley,et al.  Total synthesis of the amaryllidaceae alkaloid (+)-plicamine and its unnatural enantiomer by using solid-supported reagents and scavengers in a multistep sequence of reactions. , 2002, Angewandte Chemie.

[50]  L. Tietze,et al.  Sequential Transformations in Organic Chemistry: A Synthetic Strategy with a Future† , 1993 .

[51]  George M. Whitesides,et al.  Magnetic separations in biotechnology , 1983 .

[52]  G. Shan,et al.  Synthesis of amino-silane modified superparamagnetic silica supports and their use for protein immobilization , 2004 .

[53]  H. Shinokubo,et al.  Reaction of silyldihalomethyllithiums with nitriles: formation of alpha-keto acylsilanes via azirines and 1,3-rearrangement of silyl group from C to N. , 2004, Journal of the American Chemical Society.

[54]  S. Obrey,et al.  Concurrent tandem catalysis. , 2005, Chemical reviews.