SCATTERING OUTCOMES OF CLOSE-IN PLANETS: CONSTRAINTS ON PLANET MIGRATION

Many exoplanets in close-in orbits are observed to have relatively high eccentricities and large stellar obliquities. We explore the possibility that these result from planet–planet scattering by studying the dynamical outcomes from a large number of orbit integrations in systems with two and three gas-giant planets in close-in orbits (0.05 AU < a < 0.15 AU). We find that at these orbital separations, unstable systems starting with low eccentricities and mutual inclinations (e ≲ 0.1, i ≲ 0.1) generally lead to planet–planet collisions in which the collision product is a planet on a low-eccentricity, low-inclination orbit. This result is inconsistent with the observations. We conclude that eccentricity and inclination excitation from planet–planet scattering must precede migration of planets into short-period orbits. This result constrains theories of planet migration: the semi-major axis must shrink by 1–2 orders of magnitude without damping the eccentricity and inclination.

[1]  A. Cumming,et al.  SHEDDING LIGHT ON THE ECCENTRICITY VALLEY: GAP HEATING AND ECCENTRICITY EXCITATION OF GIANT PLANETS IN PROTOPLANETARY DISKS , 2013, 1310.8627.

[2]  P. Goldreich,et al.  OVERSTABLE LIBRATIONS CAN ACCOUNT FOR THE PAUCITY OF MEAN MOTION RESONANCES AMONG EXOPLANET PAIRS , 2013, 1308.4688.

[3]  Katherine M. Deck,et al.  FIRST-ORDER RESONANCE OVERLAP AND THE STABILITY OF CLOSE TWO-PLANET SYSTEMS , 2013, 1307.8119.

[4]  D. Lin,et al.  TOWARD A DETERMINISTIC MODEL OF PLANETARY FORMATION. VII. ECCENTRICITY DISTRIBUTION OF GAS GIANTS , 2013, 1307.6450.

[5]  N. Gorelick,et al.  SECULAR BEHAVIOR OF EXOPLANETS: SELF-CONSISTENCY AND COMPARISONS WITH THE PLANET–PLANET SCATTERING HYPOTHESIS , 2013, 1307.4761.

[6]  A. Crida,et al.  Highly inclined and eccentric massive planets - I. Planet-disc interactions , 2013, 1305.7330.

[7]  Dimitri Veras,et al.  A simple scaling for the minimum instability time-scale of two widely spaced planets , 2013, 1305.5540.

[8]  A. Morbidelli,et al.  Early dynamical instabilities in the giant planet systems , 2013, 1303.6062.

[9]  S. Tremaine,et al.  PLANETS NEAR MEAN-MOTION RESONANCES , 2012, 1211.5603.

[10]  P. Armitage,et al.  A limit on eccentricity growth from global 3D simulations of disc-planet interactions , 2012, 1210.6035.

[11]  A. Johansen,et al.  CAN PLANETARY INSTABILITY EXPLAIN THE KEPLER DICHOTOMY? , 2012, 1206.6898.

[12]  W. Kley,et al.  Planet-Disk Interaction and Orbital Evolution , 2012, 1203.1184.

[13]  D. Nesvorný,et al.  MULTIPLE-PLANET SCATTERING AND THE ORIGIN OF HOT JUPITERS , 2011, 1110.4392.

[14]  J. Laskar,et al.  PUMPING THE ECCENTRICITY OF EXOPLANETS BY TIDAL EFFECT , 2011, 1111.5486.

[15]  P. Armitage,et al.  Hydrodynamic outcomes of planet scattering in transitional discs , 2011, 1108.5382.

[16]  B. Bitsch,et al.  Evolution of inclined planets in three-dimensional radiative discs , 2011, 1104.2408.

[17]  H. Spruit,et al.  A binary merger origin for inflated hot Jupiter planets , 2011, 1102.3336.

[18]  Y. Lithwick,et al.  SECULAR CHAOS AND THE PRODUCTION OF HOT JUPITERS , 2010, 1012.3475.

[19]  Will M. Farr,et al.  Hot Jupiters from secular planet–planet interactions , 2010, Nature.

[20]  R. Rafikov,et al.  DYNAMICAL EVOLUTION OF THIN DISPERSION-DOMINATED PLANETESIMAL DISKS , 2009, 0908.1398.

[21]  K. Tsiganis,et al.  Trapping in high-order orbital resonances and inclination excitation in extrasolar systems , 2009 .

[22]  F. Marzari,et al.  INTERACTION OF A GIANT PLANET IN AN INCLINED ORBIT WITH A CIRCUMSTELLAR DISK , 2009, 0909.4375.

[23]  Sean N. Raymond,et al.  PLANET–PLANET SCATTERING IN PLANETESIMAL DISKS , 2009, 0905.3741.

[24]  Jack J. Lissauer,et al.  Orbital stability of systems of closely-spaced planets , 2009 .

[25]  P. Armitage,et al.  Extrasolar Planet Eccentricities from Scattering in the Presence of Residual Gas Disks , 2008, 0807.4186.

[26]  F. Rasio,et al.  On the Origins of Eccentric Close-In Planets , 2008, Proceedings of the International Astronomical Union.

[27]  M. Nagasawa,et al.  Formation of Hot Planets by a Combination of Planet Scattering, Tidal Circularization, and the Kozai Mechanism , 2008, 0801.1368.

[28]  E. Ford,et al.  Origins of Eccentric Extrasolar Planets: Testing the Planet-Planet Scattering Model , 2007, astro-ph/0703163.

[29]  E. Ford,et al.  Dynamical Outcomes of Planet-Planet Scattering , 2007, astro-ph/0703166.

[30]  D. Holz,et al.  Lensing and Supernovae: Quantifying the Bias on the Dark Energy Equation of State , 2007, 0710.4143.

[31]  W. Kley,et al.  On the evolution of eccentric and inclined protoplanets embedded in protoplanetary disks , 2007, 0707.2225.

[32]  S. Tremaine,et al.  Submitted to ApJ Preprint typeset using L ATEX style emulateapj v. 10/09/06 SHRINKING BINARY AND PLANETARY ORBITS BY KOZAI CYCLES WITH TIDAL FRICTION , 2022 .

[33]  S. Tremaine,et al.  Dynamical Origin of Extrasolar Planet Eccentricity Distribution , 2007, astro-ph/0703160.

[34]  Richard Greenberg,et al.  Stability Limits in Extrasolar Planetary Systems , 2006, astro-ph/0607210.

[35]  F. Adams,et al.  Giant planet migration through the action of disk torques and planet-planet scattering , 2005, astro-ph/0505234.

[36]  N. Murray,et al.  Planet Migration and Binary Companions: The Case of HD 80606b , 2003, astro-ph/0303010.

[37]  S. Lubow,et al.  Saturation of the Corotation Resonance in a Gaseous Disk , 2002, astro-ph/0208363.

[38]  R. Sari,et al.  Eccentricity Evolution for Planets in Gaseous Disks , 2002, astro-ph/0202462.

[39]  Francesco Marzari,et al.  Eccentric Extrasolar Planets: The Jumping Jupiter Model , 2002 .

[40]  P. Goldreich,et al.  Tidal Evolution of the Planetary System around HD 83443 , 2001, astro-ph/0108499.

[41]  S. Peale,et al.  Dynamics and Origin of the 2:1 Orbital Resonances of the GJ 876 Planets , 2001, astro-ph/0108104.

[42]  J. Papaloizou,et al.  Dynamical relaxation and massive extrasolar planets , 2000, astro-ph/0012391.

[43]  E. Ford,et al.  Dynamical Instabilities in Extrasolar Planetary Systems Containing Two Giant Planets , 2000, astro-ph/0010178.

[44]  J. Chambers A hybrid symplectic integrator that permits close encounters between massive bodies , 1999 .

[45]  Harold F. Levison,et al.  A Multiple Time Step Symplectic Algorithm for Integrating Close Encounters , 1998 .

[46]  Harold F. Levison,et al.  Modeling the Diversity of Outer Planetary Systems , 1998 .

[47]  Shigeru Ida,et al.  On the Origin of Massive Eccentric Planets , 1997 .

[48]  Francesco Marzari,et al.  Gravitational scattering as a possible origin for giant planets at small stellar distances , 1996, Nature.

[49]  Eric B. Ford,et al.  Dynamical Instabilities and the Formation of Extrasolar Planetary Systems , 1996, Science.

[50]  John E. Chambers,et al.  The Stability of Multi-Planet Systems , 1996 .

[51]  Brett Gladman,et al.  Dynamics of Systems of Two Close Planets , 1993 .

[52]  Junichiro Makino,et al.  N-Body simulation of gravitational interaction between planetesimals and a protoplanet. I : velocity distribution of planetesimals , 1992 .