Computers and Mathematics with Applications Semi-structured B-spline for Blending Two B-spline Surfaces
暂无分享,去创建一个
[1] I. C. Braid,et al. Non-local blending of boundary models , 1997, Comput. Aided Des..
[2] Driss Sbibih,et al. G1 Blending B-Spline Surfaces and Optimization , 2008, MCO.
[3] Rida T. Farouki,et al. Approximation of rolling-ball blends for free-form parametric surfaces , 1996, Comput. Aided Des..
[4] Xiuzi Ye,et al. Geometric continuity between adjacent Bézier patches and their constructions , 1996, Comput. Aided Geom. Des..
[5] Jianzhong Wang,et al. Generating Gn parametric blending surfaces based on partial reparameterization of base surfaces , 2007, Comput. Aided Des..
[6] Daniel J. Filip,et al. Blending parametric surfaces , 1989, TOGS.
[7] J. G. Hayes. Curved knot lines and surfaces with ruled segments , 1982 .
[8] Lyle Ramshaw,et al. Blossoms are polar forms , 1989, Comput. Aided Geom. Des..
[9] Frank Weller,et al. B-Spline Surfaces with Knot Segments , 1994 .
[10] Nicholas S. North,et al. T-spline simplification and local refinement , 2004, SIGGRAPH 2004.
[11] Malcolm I. G. Bloor,et al. Using partial differential equations to generate free-form surfaces , 1990, Comput. Aided Des..
[12] A. Kouibia,et al. Geometric continuity C1G2 of blending surfaces , 2013, Comput. Aided Des..
[13] Rae A. Earnshaw,et al. Theoretical Foundations of Computer Graphics and CAD , 1988, NATO ASI Series.
[14] Gábor Lukács. Differential geometry of G1 variable radius rolling ball blend surfaces , 1998, Comput. Aided Geom. Des..
[15] Ahmed Zidna,et al. Construction of flexible blending parametric surfaces via curves , 2009, Math. Comput. Simul..
[16] Erich Hartmann,et al. Parametric Gn blending of curves and surfaces , 2001, The Visual Computer.
[17] John E. Dennis,et al. Numerical methods for unconstrained optimization and nonlinear equations , 1983, Prentice Hall series in computational mathematics.
[18] Jung-Hong Chuang,et al. Variable-radius blending by constrained spine generation , 1997, The Visual Computer.
[19] Michael J. Wilson,et al. Generating blend surfaces using partial differential equations , 1989 .
[20] Shi-Min Hu,et al. Generalized Subdivision of Bézier Surfaces , 1996, CVGIP Graph. Model. Image Process..
[21] Jun-Hai Yong,et al. Gn blending multiple surfaces in polar coordinates , 2010, Comput. Aided Des..
[22] A. Kouibia,et al. Geometric Continuity C 1 G 2 of Blending Curves 1 , 2008 .
[23] Bongsik Choi,et al. Constant-radius blending in surface modelling , 1989 .
[24] Sung Ha Park,et al. Constructing G1 Bézier surfaces over a boundary curve network with T-junctions , 2012, Comput. Aided Des..
[25] L. Piegl,et al. The NURBS Book , 1995, Monographs in Visual Communications.
[26] Lyle Ramshaw,et al. Béziers and B-splines as Multiaffine Maps , 1988 .
[27] Fuhua Cheng,et al. Energy and B-spline interproximation , 1997, Comput. Aided Des..
[28] Jens Gravesen. Semi-regular B-spline surfaces: generalized lofting by B-splines , 1994 .
[29] Ralph R. Martin,et al. Survey A survey of blending methods that use parametric surfaces , 2002 .
[30] Carl de Boor,et al. A Practical Guide to Splines , 1978, Applied Mathematical Sciences.