Egomotion estimation of a range camera using the space envelope

In this paper we present a method to compute the egomotion of a range camera using the space envelope. The space envelope is a geometric model that provides more information than a simple segmentation for correspondences and motion estimation. We describe a novel variation of the maximal matching algorithm that matches surface normals to find correspondences. These correspondences are used to compute rotation and translation estimates of the egomotion. We demonstrate our methods on two image sequences containing 70 images. We also discuss the cases where our methods fail, and additional possible methods for exploiting the space envelope.

[1]  Jin Bae Park,et al.  Comments on "Output tracking and regulation of nonlinear system based on Takagi-Sugeno fuzzy model" , 2003, IEEE Trans. Syst. Man Cybern. Part B.

[2]  Wen-Ran Zhang,et al.  Equilibrium relations and bipolar cognitive mapping for online analytical processing with applications in international relations and strategic decision support , 2003, IEEE Trans. Syst. Man Cybern. Part B.

[3]  Lihi Zelnik-Manor,et al.  Multi-Frame Estimation of Planar Motion , 2000, IEEE Trans. Pattern Anal. Mach. Intell..

[4]  Dmitry B. Goldgof,et al.  Dynamic-Scale Model Construction From Range Imagery , 1998, IEEE Trans. Pattern Anal. Mach. Intell..

[5]  Dmitry B. Goldgof,et al.  The Space Envelope: A Representation for 3D Scenes , 1998, Comput. Vis. Image Underst..

[6]  Robert B. Fisher,et al.  Estimating 3-D rigid body transformations: a comparison of four major algorithms , 1997, Machine Vision and Applications.

[7]  Andrew W. Fitzgibbon,et al.  An Experimental Comparison of Range Image Segmentation Algorithms , 1996, IEEE Trans. Pattern Anal. Mach. Intell..

[8]  Jake K. Aggarwal,et al.  Surface Correspondence and Motion Computation from a Pair of Range Images , 1996, Comput. Vis. Image Underst..

[9]  Dmitry B. Goldgof,et al.  Extracting a Valid Boundary Representation from a Segmented Range Image , 1995, IEEE Trans. Pattern Anal. Mach. Intell..

[10]  Martin D. Levine,et al.  Registering Multiview Range Data to Create 3D Computer Objects , 1995, IEEE Trans. Pattern Anal. Mach. Intell..

[11]  Robert Bergevin,et al.  Registering Range Views of Multipart Objects , 1995, Comput. Vis. Image Underst..

[12]  Jake K. Aggarwal,et al.  Model-based object recognition in dense-range images—a review , 1993, CSUR.

[13]  Dmitry B. Goldgof,et al.  Matching and motion estimation of three-dimensional point and line sets using eigenstructure without correspondences , 1992, Pattern Recognit..

[14]  Jake K. Aggarwal,et al.  Estimation of motion from a pair of range images: A review , 1991, CVGIP Image Underst..

[15]  Thomas S. Huang,et al.  Maximal matching of 3-D points for multiple-object motion estimation , 1988, Pattern Recognit..

[16]  Berthold K. P. Horn,et al.  Closed-form solution of absolute orientation using unit quaternions , 1987 .

[17]  Minoru Asada,et al.  Representation of three-dimensional motion in dynamic scenes , 1982, Comput. Vis. Graph. Image Process..