Heteroleptic NIR-Emitting YbIII/Anilate-Based Neutral Coordination Polymer Nanosheets for Solvent Sensing

Nanosheets of two mixed linker (anilate/carboxylate)/YbIII-based two-dimensional (2D) layered coordination polymers (CPs) are herein reported. Bulky sized CPs, formulated as [Yb4(ClCNAn)5(DOBDC)1(D...

[1]  M. Yamashita,et al.  Dysprosium Chlorocyanoanilate-Based 2D-Layered Coordination Polymers. , 2019, Inorganic chemistry.

[2]  Chunhua Yan,et al.  Ultrathin 2D Rare‐Earth Nanomaterials: Compositions, Syntheses, and Applications , 2019, Advanced materials.

[3]  Josie E. Auckett,et al.  Square Grid Metal-Chloranilate Networks as Robust Host Systems for Guest Sorption. , 2019, Chemistry.

[4]  Chunfang Wei,et al.  Drug Delivery System Based on Near-Infrared Light-Responsive Molybdenum Disulfide Nanosheets Controls the High-Efficiency Release of Dexamethasone To Inhibit Inflammation and Treat Osteoarthritis. , 2019, ACS applied materials & interfaces.

[5]  Xiaoxiong Zhang,et al.  Eu3+-Postdoped UIO-66-Type Metal-Organic Framework as a Luminescent Sensor for Hg2+ Detection in Aqueous Media. , 2019, Inorganic chemistry.

[6]  Weisheng Liu,et al.  Function-Oriented: The Construction of Lanthanide MOF Luminescent Sensors Containing Dual-Function Urea Hydrogen-Bond Sites for Efficient Detection of Picric Acid. , 2019, Chemistry.

[7]  N. Avarvari,et al.  Conducting Anilate-Based Mixed-Valence Fe(II)Fe(III) Coordination Polymer: Small-Polaron Hopping Model for Oxalate-Type Fe(II)Fe(III) 2D Networks. , 2018, Journal of the American Chemical Society.

[8]  N. Avarvari,et al.  Nanosheets of Two-Dimensional Neutral Coordination Polymers Based on Near-Infrared-Emitting Lanthanides and a Chlorocyananilate Ligand , 2018, Chemistry of Materials.

[9]  C. Gómez‐García,et al.  Effect of the lanthanoid-size on the structure of a series of lanthanoid-anilato 2-D lattices* , 2018 .

[10]  A. Cantarero,et al.  Tuning the Structure and Properties of Lanthanoid Coordination Polymers with an Asymmetric Anilato Ligand , 2018 .

[11]  S. Benmansour,et al.  Solvent-modulated structures in anilato-based 2D coordination polymers , 2017 .

[12]  N. Avarvari,et al.  Synthesis and Physical Properties of Purely Organic BEDT-TTF-Based Conductors Containing Hetero-/Homosubstituted Cl/CN-Anilate Derivatives. , 2017, Inorganic chemistry.

[13]  S. Zhang,et al.  Mini Review: Nanosheet Technology towards Biomedical Application , 2017, Nanomaterials.

[14]  C. Gómez‐García,et al.  Nanosheets of Two-Dimensional Magnetic and Conducting Fe(II)/Fe(III) Mixed-Valence Metal-Organic Frameworks. , 2017, ACS applied materials & interfaces.

[15]  D. D’Alessandro,et al.  Mixed Valency in a 3D Semiconducting Iron-Fluoranilate Coordination Polymer. , 2017, Inorganic chemistry.

[16]  F. Congiu,et al.  Recent Advances on Anilato-Based Molecular Materials with Magnetic and/or Conducting Properties , 2017 .

[17]  L. Carlos,et al.  Lanthanide Organic Framework Luminescent Thermometers. , 2016, Chemistry.

[18]  A. Castellanos-Gómez,et al.  Luminescent transition metal dichalcogenide nanosheets through one-step liquid phase exfoliation , 2016 .

[19]  Herbert T. Schaef,et al.  Adsorption, separation, and catalytic properties of densified metal-organic frameworks , 2016 .

[20]  Hua Zhang,et al.  Ultrathin 2D Metal–Organic Framework Nanosheets , 2015, Advanced materials.

[21]  J. Bünzli On the design of highly luminescent lanthanide complexes , 2015 .

[22]  N. Avarvari,et al.  Complete series of chiral paramagnetic molecular conductors based on tetramethyl-bis(ethylenedithio)-tetrathiafulvalene (TM-BEDT-TTF) and Chloranilate-bridged heterobimetallic honeycomb layers. , 2015, Inorganic chemistry.

[23]  P. Deplano,et al.  Hydrogen-Bonded Supramolecular Architectures Based on Tris(Hydranilato)Metallate(III) (M = Fe, Cr) Metallotectons , 2014 .

[24]  Martin Head-Gordon,et al.  M2(m-dobdc) (M = Mg, Mn, Fe, Co, Ni) metal-organic frameworks exhibiting increased charge density and enhanced H2 binding at the open metal sites. , 2014, Journal of the American Chemical Society.

[25]  F. Artizzu,et al.  Structural diversity and physical properties of paramagnetic molecular conductors based on bis(ethylenedithio)tetrathiafulvalene (BEDT-TTF) and the tris(chloranilato)ferrate(III) complex. , 2014, Inorganic chemistry.

[26]  Z. Su,et al.  A fluorescent sensor for highly selective detection of nitroaromatic explosives based on a 2D, extremely stable, metal-organic framework. , 2014, Chemistry.

[27]  Craig M. Brown,et al.  Design of a metal-organic framework with enhanced back bonding for separation of N₂ and CH₄. , 2014, Journal of the American Chemical Society.

[28]  Ying‐Hui Zhang,et al.  Fluorous Metal-Organic Frameworks with Enhanced Stability and High H2/CO2 Storage Capacities , 2013, Scientific Reports.

[29]  Michael O’Keeffe,et al.  The Chemistry and Applications of Metal-Organic Frameworks , 2013, Science.

[30]  Cheng Wang,et al.  Metal-organic frameworks as a tunable platform for designing functional molecular materials. , 2013, Journal of the American Chemical Society.

[31]  F. Artizzu,et al.  Silica sol-gel glasses incorporating dual-luminescent Yb quinolinolato complex: processing, emission and photosensitising properties of the 'antenna' ligand. , 2012, Dalton transactions.

[32]  S. Du,et al.  Highly luminescent and thermostable lanthanide-carboxylate framework materials with helical configurations , 2012 .

[33]  Zhiyong Guo,et al.  A luminescent mixed-lanthanide metal-organic framework thermometer. , 2012, Journal of the American Chemical Society.

[34]  Gérard Férey,et al.  Metal-organic frameworks in biomedicine. , 2012, Chemical reviews.

[35]  C. Pietzonka,et al.  A series of three-dimensional lanthanide MOFs: Observation of reversible structural changes controlled by solvent desorption-adsorption, and magnetic properties , 2011 .

[36]  B. Abrahams,et al.  Coordination Polymers of 2,5-Dihydroxybenzoquinone and Chloranilic Acid with the (10,3)-a Topology , 2011 .

[37]  A. Cheetham,et al.  Hydrogen storage in a highly interpenetrated and partially fluorinated metal-organic framework. , 2011, Inorganic chemistry.

[38]  F. Artizzu,et al.  Ultrafast Dynamics of Intersystem Crossing and Resonance Energy Transfer in Er(III)−Quinolinolate Complexes , 2010 .

[39]  J. Bünzli Lanthanide luminescence for biomedical analyses and imaging. , 2010, Chemical reviews.

[40]  M. Allendorf,et al.  Luminescent metal-organic frameworks. , 2009, Chemical Society reviews.

[41]  Xiaoping Wang,et al.  Crystallographic observation of dynamic gas adsorption sites and thermal expansion in a breathable fluorous metal-organic framework. , 2009, Angewandte Chemie.

[42]  Xiaoping Wang,et al.  Fluorous metal-organic frameworks for high-density gas adsorption. , 2007, Journal of the American Chemical Society.

[43]  Gérard Férey,et al.  Hydrogen storage in the giant-pore metal-organic frameworks MIL-100 and MIL-101. , 2006, Angewandte Chemie.

[44]  C. Serre,et al.  How hydration drastically improves adsorption selectivity for CO(2) over CH(4) in the flexible chromium terephthalate MIL-53. , 2006, Angewandte Chemie.

[45]  P. B. Wyatt,et al.  Quenching of IR luminescence of erbium, neodymium, and ytterbium beta-diketonate complexes by ligand C-H and C-D bonds. , 2006, The journal of physical chemistry. B.

[46]  G. Qian,et al.  Enhanced near-infrared-luminescence in an erbium tetrafluoroterephthalate framework. , 2006, Inorganic chemistry.

[47]  F. Artizzu,et al.  Near infrared light emission quenching in organolanthanide complexes , 2006 .

[48]  C. Serre,et al.  First Direct Imaging of Giant Pores of the Metal−Organic Framework MIL-101 , 2005 .

[49]  Gérard Férey,et al.  Very Large Breathing Effect in the First Nanoporous Chromium(III)-Based Solids: MIL-53 or CrIII(OH)·{O2C−C6H4−CO2}·{HO2C−C6H4−CO2H}x·H2Oy , 2002 .

[50]  J. Bünzli,et al.  Lanthanide-containing molecular and supramolecular polymetallic functional assemblies. , 2002, Chemical reviews.

[51]  Yasuhiro Koike,et al.  Plastic optical fiber lasers and amplifiers containing lanthanide complexes. , 2002, Chemical reviews.

[52]  B. Abrahams,et al.  Dihydroxybenzoquinone and chloranilic acid derivatives of rare earth metals , 2002 .

[53]  M. O'keeffe,et al.  Design and synthesis of an exceptionally stable and highly porous metal-organic framework , 1999, Nature.

[54]  R. Tubino,et al.  Predictive modeling of the vibrational quenching in emitting lanthanides complexes , 2012 .

[55]  B. Abrahams,et al.  Gas hydrate-like pentagonal dodecahedral M2(H2O)18 cages (M = lanthanide or Y) in 2,5-dihydroxybenzoquinone-derived coordination polymers , 1996 .