A new fixed point approach for stable networks stable marriages

In a network stability problem, the aim is to find stable configurations for a given network of Boolean gates. For general networks, the problem is known to be computationally hard. Mayr and Subramanian [22,23] introduced an interesting class of networks by imposing fanout restrictions at each gate, and showed that network stability on this class of networks is still sufficiently rich to express as special cases the well-known stable marriage and stable roommate problems. In this paper we study the sequential and parallel complexity of network stability on networks with restricted fanout. Our approach builds on structural properties of these networks, and exposes close ties with the theory of retracts and isometric embeddings for product graphs. This structure gives then new efficient algorithms for questions of representation, enumeration and optimality in stable matching.

[1]  Michael E. Saks,et al.  Every finite distributive lattice is a set of stable matchings for a small stable marriage instance , 1987, J. Comb. Theory, Ser. A.

[2]  Robert W. Irving An Efficient Algorithm for the "Stable Roommates" Problem , 1985, J. Algorithms.

[3]  Michael E. Saks,et al.  Dynamic Search in Graphs , 1987 .

[4]  R. Graham,et al.  On isometric embeddings of graphs , 1985 .

[5]  Donald R. Woods,et al.  Notes on Introductory Combinatorics. , 1986 .

[6]  Henry Martyn Mulder N-cubes and Median Graphs , 1980, J. Graph Theory.

[7]  Harry R. Lewis,et al.  Review of "Mariages stables et leur relations avec d'autre problèmes combinatoires: introduction à l'analyze mathématique des algorithmes" by Donald E. Knuth. Les Presses de l'Université de Montréal. , 1978, SIGA.

[8]  Kenneth P. Bogart,et al.  Introductory Combinatorics , 1977 .

[9]  Robert W. Irving,et al.  The Complexity of Counting Stable Marriages , 1986, SIAM J. Comput..

[10]  Eli Upfal,et al.  Are search and decision programs computationally equivalent? , 1985, STOC '85.

[11]  P. Hell,et al.  Absolute Retracts and Varieties of Reflexive Graphs , 1987, Canadian Journal of Mathematics.

[12]  Dan Gusfield,et al.  The Structure of the Stable Roommate Problem: Efficient Representation and Enumeration of All Stable Assignments , 1988, SIAM J. Comput..

[13]  Erwin Pesch,et al.  Retracts of graphs , 1988 .

[14]  Hans-Jürgen Bandelt,et al.  Retracts of hypercubes , 1984, J. Graph Theory.

[15]  Richard J. Nowakowski,et al.  Retract rigid cartesian products of graphs , 1988, Discret. Math..

[16]  Robert W. Irving,et al.  An efficient algorithm for the “optimal” stable marriage , 1987, JACM.

[17]  Dan Gusfield,et al.  Three Fast Algorithms for Four Problems in Stable Marriage , 1987, SIAM J. Comput..

[18]  Eytan Ronn,et al.  On the complexity of stable matchings with and without ties , 1986 .

[19]  Michael E. Saks,et al.  A Dynamic location problem for graphs , 1989, Comb..

[20]  Donald E. Knuth Mariages stables et leurs relations avec d'autres problèmes combinatoires : introduction à l'analyse mathématique des algorithmes , 1976 .

[21]  Hans-Jürgen Bandelt,et al.  A fixed cube theorem for median graphs , 1987, Discret. Math..