Fuzziness parameter selection in fuzzy c-means: The perspective of cluster validation

Fuzzy c-means (FCM) algorithm is an important clustering method in pattern recognition, while the fuzziness parameter, m, in FCM algorithm is a key parameter that can significantly affect the result of clustering. Cluster validity index (CVI) is a kind of criterion function to validate the clustering results, thereby determining the optimal cluster number of a data set. From the perspective of cluster validation, we propose a novel method to select the optimal value of m in FCM, and four well-known CVIs, namely XB, VK, VT, and SC, for fuzzy clustering are used. In this method, the optimal value of m is determined when CVIs reach their minimum values. Experimental results on four synthetic data sets and four real data sets have demonstrated that the range of m is [2, 3.5] and the optimal interval is [2.5, 3].

[1]  Frank Chung-Hoon Rhee,et al.  Uncertain Fuzzy Clustering: Interval Type-2 Fuzzy Approach to $C$-Means , 2007, IEEE Transactions on Fuzzy Systems.

[2]  Olatz Arbelaitz,et al.  Towards a standard methodology to evaluate internal cluster validity indices , 2011, Pattern Recognit. Lett..

[3]  Weina Wang,et al.  On fuzzy cluster validity indices , 2007, Fuzzy Sets Syst..

[4]  Mohamed-Jalal Fadili,et al.  On the number of clusters and the fuzziness index for unsupervised FCA application to BOLD fMRI time series , 2001, Medical Image Anal..

[5]  Yossef Steinberg,et al.  A comparison of cluster validity criteria for a mixture of normal distributed data , 2000, Pattern Recognit. Lett..

[6]  Qian Wang,et al.  The range of the value for the fuzzifier of the fuzzy c-means algorithm , 2012, Pattern Recognit. Lett..

[7]  James C. Bezdek,et al.  Pattern Recognition with Fuzzy Objective Function Algorithms , 1981, Advanced Applications in Pattern Recognition.

[8]  Anil K. Jain Data clustering: 50 years beyond K-means , 2008, Pattern Recognit. Lett..

[9]  Anil K. Jain Data clustering: 50 years beyond K-means , 2010, Pattern Recognit. Lett..

[10]  Jian Qiu Zhang,et al.  Improvement and optimization of a fuzzy C-means clustering algorithm , 2001, IMTC 2001. Proceedings of the 18th IEEE Instrumentation and Measurement Technology Conference. Rediscovering Measurement in the Age of Informatics (Cat. No.01CH 37188).

[11]  Josef Kittler,et al.  Pattern recognition : a statistical approach , 1982 .

[12]  Gerardo Beni,et al.  A Validity Measure for Fuzzy Clustering , 1991, IEEE Trans. Pattern Anal. Mach. Intell..

[13]  V. J. Rayward-Smith,et al.  Fuzzy Cluster Analysis: Methods for Classification, Data Analysis and Image Recognition , 1999 .

[14]  Concha Bielza,et al.  A comparison of clustering quality indices using outliers and noise , 2012, Intell. Data Anal..

[15]  I. Burhan Türksen,et al.  Entropy assessment for type-2 fuzziness , 2004, 2004 IEEE International Conference on Fuzzy Systems (IEEE Cat. No.04CH37542).

[16]  K. alik,et al.  Validity index for clusters of different sizes and densities , 2011 .

[17]  Minho Kim,et al.  New indices for cluster validity assessment , 2005, Pattern Recognit. Lett..

[18]  Ramachandran Baskaran,et al.  A Survey on Internal Validity Measure for Cluster Validation , 2010 .

[19]  Zeng-qi Sun,et al.  Improved validation index for fuzzy clustering , 2005, Proceedings of the 2005, American Control Conference, 2005..

[20]  Ujjwal Maulik,et al.  Performance Evaluation of Some Clustering Algorithms and Validity Indices , 2002, IEEE Trans. Pattern Anal. Mach. Intell..

[21]  Olatz Arbelaitz,et al.  An extensive comparative study of cluster validity indices , 2013, Pattern Recognit..

[22]  Zhihong Chong,et al.  Clustering-oriented privacy-preserving data publishing , 2012, Knowl. Based Syst..

[23]  James C. Bezdek,et al.  Correction to "On Cluster Validity for the Fuzzy c-Means Model" [Correspondence] , 1997, IEEE Trans. Fuzzy Syst..

[24]  James C. Bezdek,et al.  Efficient Implementation of the Fuzzy c-Means Clustering Algorithms , 1986, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[25]  Rui Xu,et al.  Survey of clustering algorithms , 2005, IEEE Transactions on Neural Networks.

[26]  S. Dolnicar,et al.  An examination of indexes for determining the number of clusters in binary data sets , 2002, Psychometrika.

[27]  J. C. Dunn,et al.  A Fuzzy Relative of the ISODATA Process and Its Use in Detecting Compact Well-Separated Clusters , 1973 .

[28]  John A. Hartigan,et al.  Clustering Algorithms , 1975 .

[29]  J. Bezdek,et al.  FCM: The fuzzy c-means clustering algorithm , 1984 .

[30]  Yi Li,et al.  A cluster validity index for fuzzy clustering , 2008, Inf. Sci..

[31]  Paul Y. S. Cheung,et al.  Clustering of clusters , 1992, Pattern Recognit..

[32]  James C. Bezdek,et al.  On cluster validity for the fuzzy c-means model , 1995, IEEE Trans. Fuzzy Syst..

[33]  Yu Jian On the Fuzziness Index of the FCM Algorithms , 2003 .

[34]  Jian Yu,et al.  Analysis of the weighting exponent in the FCM , 2004, IEEE Trans. Syst. Man Cybern. Part B.

[35]  W. T. Tucker,et al.  Convergence theory for fuzzy c-means: Counterexamples and repairs , 1987, IEEE Transactions on Systems, Man, and Cybernetics.

[36]  Soon-H. Kwon Cluster validity index for fuzzy clustering , 1998 .

[37]  James C. Bezdek,et al.  Validity-guided (re)clustering with applications to image segmentation , 1996, IEEE Trans. Fuzzy Syst..

[38]  Kuo-Lung Wu,et al.  Analysis of parameter selections for fuzzy c-means , 2012, Pattern Recognit..

[39]  J. Bezdek A Physical Interpretation of Fuzzy ISODATA , 1993 .

[40]  Krista Rizman Zalik,et al.  Cluster validity index for estimation of fuzzy clusters of different sizes and densities , 2010, Pattern Recognit..

[41]  J. B. Jordan,et al.  On the optimal choice of parameters in a fuzzy c-means algorithm , 1992, [1992 Proceedings] IEEE International Conference on Fuzzy Systems.

[42]  Shihong Yue,et al.  Clustering mechanism for electric tomography imaging , 2012, Science China Information Sciences.

[43]  I. Türksen,et al.  Upper and lower values for the level of fuzziness in FCM , 2007, Inf. Sci..

[44]  Gang Li,et al.  Improved FOCUSS method for reconstruction of cluster structured sparse signals in radar imaging , 2012, Science China Information Sciences.

[45]  James C. Bezdek,et al.  A comparison of neural network and fuzzy clustering techniques in segmenting magnetic resonance images of the brain , 1992, IEEE Trans. Neural Networks.

[46]  K. alik Cluster validity index for estimation of fuzzy clusters of different sizes and densities , 2010 .