On the paths Hölder continuity in models of Euclidean quantum field theory

Sample paths properties of certain stochastic processes connected to models of Euclidean Quantum Field Theory are studied. In particular, the Hölder continuity of paths of the coordinate processes and trace processes is proven. The results are obtained by an application of classical probabilistic criteria together with basic estimates proven in Constructive Quantum Field Theory.

[1]  Stochastic Quantization of the Two-Dimensional Polymer Measure , 1999 .

[2]  F. Russo Constructive Approach to the Global Markov Property in Euclidean Quantum Field Theory I. Construction of transition kernels by , 1999 .

[3]  Models of Local Relativistic Quantum Fields with Indefinite Metric (in All Dimensions) , 1997, math-ph/0409057.

[4]  A. Crisanti,et al.  Predictability in the large: an extension of the concept of Lyapunov exponent , 1996, chao-dyn/9606014.

[5]  S. Albeverio,et al.  General Setting for Stochastic Processes Associated with Quantum Fields , 1997 .

[6]  S. Albeverio,et al.  CONVOLUTED GENERALIZED WHITE NOISE, SCHWINGER FUNCTIONS AND THEIR ANALYTIC CONTINUATION TO WIGHTMAN FUNCTIONS , 1996 .

[7]  R. Gielerak,et al.  Covariant SPDEs and quantum field structures , 1996, funct-an/9607001.

[8]  V. Bogachev,et al.  Mehler formula and capacities for infinite-dimensional Ornstein-Uhlenbeck processes with general linear drift , 1995 .

[9]  Tusheng Zhang,et al.  Uniqueness of Generalized Schrödinger Operators, Part II , 1994 .

[10]  Jürgen Potthoff,et al.  White Noise: An Infinite Dimensional Calculus , 1993 .

[11]  M. Röckner,et al.  Uniqueness of generalized Schrödinger operators and applications , 1992 .

[12]  I. Segal,et al.  Introduction to Algebraic and Constructive Quantum Field Theory , 1992 .

[13]  M. Röckner,et al.  Stochastic differential equations in infinite dimensions: solutions via Dirichlet forms , 1991 .

[14]  M. Röckner,et al.  Classical dirichlet forms on topological vector spaces-the construction of the associated diffusion process , 1989 .

[15]  M. Röckner Traces of harmonic functions and a new path space for the free quantum field , 1988 .

[16]  M. Röckner On the Transition Function of the Infinite Dimensional Ornstein-Uhlenbeck Process Given by the Free Quantum Field , 1988 .

[17]  R. Gielerak On the DLR equation for the two‐dimensional sine–Gordon model , 1986 .

[18]  M. Röckner Specifications and Martin boundaries forP(Φ)2-random fields , 1986 .

[19]  M. Röckner A Dirichlet problem for distributions and specifications for random fields , 1985 .

[20]  Marc Yor,et al.  Semi-martingale inequalities via the Garsia-Rodemich-Rumsey lemma, and applications to local times , 1982 .

[21]  J. Glimm,et al.  Quantum Physics: A Functional Integral Point of View , 1981 .

[22]  Elliptic equations and Gaussian processes , 1980 .

[23]  Hölder continuity of sample paths in Euclidean field theory , 1979 .

[24]  J. Fröhlich,et al.  Correlation inequalities and the thermodynamic limit for classical and quantum continuous systems , 1978 .

[25]  Yao Hai A remark on the construction of quantum fields from Markov fields , 1977 .

[26]  S. Albeverio,et al.  Dirichlet forms and diffusion processes on rigged Hilbert spaces , 1977 .

[27]  R. Carmona Measurable norms and some Banach space valued Gaussian processes , 1977 .

[28]  B. Simon,et al.  Fluctuations in $P(\phi)_1$ Processes , 1976 .

[29]  Sergio Albeverio,et al.  Homogeneous random fields and statistical mechanics , 1975 .

[30]  C. Newman Inequalities for Ising models and field theories which obey the Lee-Yang Theorem , 1975 .

[31]  J. Cannon Continuous sample paths in quantum field theory , 1974 .

[32]  M. Reed,et al.  Support properties of the free measure for Boson fields , 1974 .

[33]  S. Albeverio,et al.  The Wightman Axioms and the Mass Gap for Strong Interactions of Exponential Type in Two-Dimensional Space-Time , 1974 .

[34]  Barry Simon,et al.  The P(φ)[2] Euclidean (quantum) field theory , 1974 .

[35]  Edward Nelson The free Markoff field , 1973 .

[36]  Edward Nelson,et al.  Construction of quantum fields from Markoff fields. , 1973 .

[37]  E. Stein,et al.  Introduction to Fourier Analysis on Euclidean Spaces. , 1971 .