3-D Surface Reconstruction and Evaluation of Wrinkled Fabrics by Stereo Vision

This paper presents a stereo vision system for reconstructing the three-dimensional (3-D) surface of a wrinkled fabric and for detecting and characterizing wrinkles to evaluate the severity of wrinkling. The system captures a pair of images through two 10.2-megapixel digital cameras, performs subpixel stereo matching based on correlation gradients, and yields a depth resolution under 0.1 mm. The matching algorithm is realized in a regularization framework and implemented by the finite-element method, in which the disparity map is parameterized by dense bicubic B-splines. The outputs of the system include a wrinkle map that depicts the locations of the ridges of individual wrinkles and quantitative data on wrinkle density, amplitude, and sharpness for a tested sample.

[1]  Wilfried Brauer,et al.  Intensity- and Gradient-Based Stereo Matching Using Hierarchical Gaussian Basis Functions , 1998, IEEE Trans. Pattern Anal. Mach. Intell..

[2]  Toshio Mori,et al.  Evaluating Wrinkled Fabrics with Image Analysis and Neural Networks , 2002 .

[3]  Fujio Yamaguchi,et al.  Curves and Surfaces in Computer Aided Geometric Design , 1988, Springer Berlin Heidelberg.

[4]  Tomaso Poggio,et al.  Computational vision and regularization theory , 1985, Nature.

[5]  Richard Szeliski,et al.  Spline-Based Image Registration , 1997, International Journal of Computer Vision.

[6]  Jitendra Malik,et al.  Scale-Space and Edge Detection Using Anisotropic Diffusion , 1990, IEEE Trans. Pattern Anal. Mach. Intell..

[7]  John F. Canny,et al.  A Computational Approach to Edge Detection , 1986, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[8]  Tae Jin Kang,et al.  A New Objective Method of Measuring Fabric Wrinkles Using a 3-D Projecting Grid Technique , 1999 .

[9]  Chris Turner,et al.  Objective Evaluation of Durable Press Treatments and Fabric Smoothness Ratings , 2005 .

[10]  X. B. Huang,et al.  Evaluating Fabric Wrinkle Degree with a Photometric Stereo Method , 2003 .

[11]  Tomaso Poggio,et al.  Computational vision and regularization theory , 1985, Nature.

[12]  Bugao Xu,et al.  Instrumental Evaluation of Fabric Wrinkle Recovery , 1995 .

[13]  Roger Y. Tsai,et al.  A versatile camera calibration technique for high-accuracy 3D machine vision metrology using off-the-shelf TV cameras and lenses , 1987, IEEE J. Robotics Autom..

[14]  Les A. Piegl,et al.  The NURBS book (2nd ed.) , 1997 .

[15]  Rafael C. González,et al.  Local Determination of a Moving Contrast Edge , 1985, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[16]  Richard Szeliski,et al.  A Taxonomy and Evaluation of Dense Two-Frame Stereo Correspondence Algorithms , 2001, International Journal of Computer Vision.

[17]  Bugao Xu,et al.  Evaluating Fabric Smoothness Appearance with a Laser Profilometer , 1998 .

[18]  Tae Jin Kang,et al.  New Objective Evaluation of Fabric Smoothness Appearance , 2001 .

[19]  Bugao Xu,et al.  Fabric wrinkle evaluation using laser triangulation and neural network classifier , 1999 .

[20]  Les A. Piegl,et al.  On NURBS: A Survey , 2004 .

[21]  Changming Sun,et al.  Fast Stereo Matching Using Rectangular Subregioning and 3D Maximum-Surface Techniques , 2002, International Journal of Computer Vision.

[22]  Tae Jin Kang,et al.  A New Objective Method of Measuring Fabric Wrinkles Using a 3-D Projecting Grid Technique , 1999 .

[23]  D. Scharstein,et al.  A Taxonomy and Evaluation of Dense Two-Frame Stereo Correspondence Algorithms , 2001, Proceedings IEEE Workshop on Stereo and Multi-Baseline Vision (SMBV 2001).