Upper Bound of Entropy Rate Revisited --A New Extrapolation of Compressed Large-Scale Corpora--
暂无分享,去创建一个
[1] W. Hilberg,et al. Der bekannte Grenzwert der redundanzfreien Information in Texten - eine Fehlinterpretation der Shannonschen Experimente? , 1990 .
[2] Robert L. Mercer,et al. An Estimate of an Upper Bound for the Entropy of English , 1992, CL.
[3] Werner Ebeling,et al. Entropy of symbolic sequences: the role of correlations , 1991 .
[4] Paolo Ferragina,et al. Text Compression , 2009, Encyclopedia of Database Systems.
[5] Abraham Lempel,et al. A universal algorithm for sequential data compression , 1977, IEEE Trans. Inf. Theory.
[6] Thomas M. Cover,et al. A convergent gambling estimate of the entropy of English , 1978, IEEE Trans. Inf. Theory.
[7] Eugene Charniak,et al. Entropy Rate Constancy in Text , 2002, ACL.
[8] Guy Louchard,et al. Average redundancy rate of the Lempel-Ziv code , 1996, Proceedings of Data Compression Conference - DCC '96.
[9] Ian H. Witten,et al. Identifying Hierarchical Structure in Sequences: A linear-time algorithm , 1997, J. Artif. Intell. Res..
[10] Kumiko Tanaka-Ishii,et al. Entropy Rate Estimates for Natural Language - A New Extrapolation of Compressed Large-Scale Corpora , 2016, Entropy.
[11] Claude E. Shannon,et al. Prediction and Entropy of Printed English , 1951 .
[12] Thomas M. Cover,et al. Elements of Information Theory , 2005 .
[13] Geoffrey Sampson,et al. Word frequency distributions , 2002, Computational Linguistics.
[14] Kevin Atteson,et al. The asymptotic redundancy of Bayes rules for Markov chains , 1999, IEEE Trans. Inf. Theory.
[15] Peter Grassberger. Data Compression and Entropy Estimates by Non-sequential Recursive Pair Substitution , 2002 .
[16] En-Hui Yang,et al. Grammar-based codes: A new class of universal lossless source codes , 2000, IEEE Trans. Inf. Theory.
[17] Jorma Rissanen,et al. The Minimum Description Length Principle in Coding and Modeling , 1998, IEEE Trans. Inf. Theory.
[18] Boris Ryabko,et al. Applications of Universal Source Coding to Statistical Analysis of Time Series , 2008, ArXiv.
[19] Roger Levy,et al. Speakers optimize information density through syntactic reduction , 2006, NIPS.
[20] Sang Joon Kim,et al. A Mathematical Theory of Communication , 2006 .
[21] Peter Grassberger,et al. Entropy estimation of symbol sequences. , 1996, Chaos.