A two-step scaffolding model for mitotic chromosome assembly.

[1]  M. Carrì,et al.  Chromosome length and DNA loop size during early embryonic development of Xenopus laevis , 1993, Chromosoma.

[2]  Y. Mo,et al.  Rapid exchange of mammalian topoisomerase IIα at kinetochores and chromosome arms in mitosis , 2002, The Journal of cell biology.

[3]  Morten O. Christensen,et al.  Dynamics of human DNA topoisomerases IIα and IIβ in living cells , 2002, The Journal of cell biology.

[4]  Barbara J Meyer,et al.  C. elegans condensin promotes mitotic chromosome architecture, centromere organization, and sister chromatid segregation during mitosis and meiosis. , 2002, Genes & development.

[5]  T. Hirano The ABCs of SMC proteins: two-armed ATPases for chromosome condensation, cohesion, and repair. , 2002, Genes & development.

[6]  R. Strick,et al.  Cation–chromatin binding as shown by ion microscopy is essential for the structural integrity of chromosomes , 2001, The Journal of cell biology.

[7]  O. A. Cabello,et al.  Cell cycle-dependent expression and nucleolar localization of hCAP-H. , 2001, Molecular biology of the cell.

[8]  A. Belmont,et al.  Reproducible but dynamic positioning of DNA in chromosomes during mitosis , 2001, Nature Cell Biology.

[9]  A. Pombo,et al.  Correlative Fluorescence and Electron Microscopy on Ultrathin Cryosections: Bridging the Resolution Gap , 2001, The journal of histochemistry and cytochemistry : official journal of the Histochemistry Society.

[10]  C. Sunkel,et al.  A role for Drosophila SMC4 in the resolution of sister chromatids in mitosis , 2001, Current Biology.

[11]  J. Peters,et al.  Two Distinct Pathways Remove Mammalian Cohesin from Chromosome Arms in Prophase and from Centromeres in Anaphase , 2000, Cell.

[12]  K. Yokomori,et al.  A Human Condensin Complex Containing hCAP-C–hCAP-E and CNAP1, a Homolog of Xenopus XCAP-D2, Colocalizes with Phosphorylated Histone H3 during the Early Stage of Mitotic Chromosome Condensation , 2000, Molecular and Cellular Biology.

[13]  M. Heck,et al.  Review: SMCs in the world of chromosome biology- from prokaryotes to higher eukaryotes. , 2000, Journal of structural biology.

[14]  N. Cozzarelli,et al.  13S Condensin Actively Reconfigures DNA by Introducing Global Positive Writhe Implications for Chromosome Condensation , 1999, Cell.

[15]  U. K. Laemmli,et al.  Facilitation of chromatin dynamics by SARs. , 1998, Current opinion in genetics & development.

[16]  K. Kimura,et al.  ATP-Dependent Positive Supercoiling of DNA by 13S Condensin: A Biochemical Implication for Chromosome Condensation , 1997, Cell.

[17]  R. Kobayashi,et al.  Condensins, Chromosome Condensation Protein Complexes Containing XCAP-C, XCAP-E and a Xenopus Homolog of the Drosophila Barren Protein , 1997, Cell.

[18]  W. Earnshaw,et al.  Untangling the role of DNA topoisomerase II in mitotic chromosome structure and function. , 1997, BioEssays : news and reviews in molecular, cellular and developmental biology.

[19]  H. Bellen,et al.  Chromatid Segregation at Anaphase Requires the barren Product, a Novel Chromosome-Associated Protein That Interacts with Topoisomerase II , 1996, Cell.

[20]  U. K. Laemmli,et al.  SARs are cis DNA elements of chromosome dynamics: Synthesis of a SAR repressor protein , 1995, Cell.

[21]  D. Koshland,et al.  SMC2, a Saccharomyces cerevisiae gene essential for chromosome segregation and condensation, defines a subgroup within the SMC family. , 1995, Genes & development.

[22]  T. Mitchison,et al.  A heterodimeric coiled-coil protein required for mitotic chromosome condensation in vitro , 1994, Cell.

[23]  W. Earnshaw,et al.  ScII: an abundant chromosome scaffold protein is a member of a family of putative ATPases with an unusual predicted tertiary structure , 1994, The Journal of cell biology.

[24]  U. K. Laemmli,et al.  Metaphase chromosome structure: Bands arise from a differential folding path of the highly AT-rich scaffold , 1994, Cell.

[25]  T. Mitchison,et al.  Topoisomerase II does not play a scaffolding role in the organization of mitotic chromosomes assembled in Xenopus egg extracts , 1993, The Journal of cell biology.

[26]  J. Roca,et al.  The capture of a DNA double helix by an ATP-dependent protein clamp: A key step in DNA transport by type II DNA topoisomerases , 1992, Cell.

[27]  C. Rieder,et al.  Colcemid and the mitotic cycle. , 1992, Journal of cell science.

[28]  E. Viégas-Péquignot,et al.  Genes occupy a fixed and symmetrical position on sister chromatids , 1991, Cell.

[29]  U. K. Laemmli,et al.  Chromosome assembly in vitro: Topoisomerase II is required for condensation , 1991, Cell.

[30]  U. K. Laemmli,et al.  Preferential, cooperative binding of DNA topoisomerase II to scaffold‐associated regions. , 1989, The EMBO journal.

[31]  D. Agard,et al.  Fluorescence microscopy in three dimensions. , 1989, Methods in cell biology.

[32]  U. K. Laemmli,et al.  The metaphase scaffold is helically folded: Sister chromatids have predominantly opposite helical handedness , 1988, Cell.

[33]  T. Uemura,et al.  DNA topoisomerase II is required for condensation and separation of mitotic chromosomes in S. pombe , 1987, Cell.

[34]  U. K. Laemmli,et al.  Metaphase chromosome structure. Involvement of topoisomerase II. , 1986, Journal of molecular biology.

[35]  W. Earnshaw,et al.  Localization of topoisomerase II in mitotic chromosomes , 1985, The Journal of cell biology.

[36]  W. Earnshaw,et al.  Topoisomerase II is a structural component of mitotic chromosome scaffolds , 1985, The Journal of cell biology.

[37]  U. K. Laemmli,et al.  Organization of the higher-order chromatin loop: specific DNA attachment sites on nuclear scaffold , 1984, Cell.

[38]  U. K. Laemmli,et al.  Architecture of metaphase chromosomes and chromosome scaffolds , 1983, The Journal of cell biology.

[39]  C. D. Lewis,et al.  Higher order metaphase chromosome structure: Evidence for metalloprotein interactions , 1982, Cell.

[40]  Brian Bowen,et al.  The detection of DNA-binding proteins by protein blotting , 1980, Nucleic Acids Res..

[41]  U. K. Laemmli,et al.  Metaphase chromosome structure: Evidence for a radial loop model , 1979, Cell.

[42]  J. R. Paulson,et al.  Metaphase chromosome structure: the role of nonhistone proteins. , 1978, Cold Spring Harbor symposia on quantitative biology.

[43]  J. R. Paulson,et al.  The structure of histone-depleted metaphase chromosomes , 1977, Cell.

[44]  J. R. Paulson,et al.  Isolation of a protein scaffold from mitotic HeLa cell chromosomes. , 1977, Proceedings of the National Academy of Sciences of the United States of America.

[45]  U. K. Laemmli,et al.  Role of nonhistone proteins in metaphase chromosome structure , 1977, Cell.

[46]  J. R. Paulson,et al.  Metaphase chromosome structure , 1977 .