A posteriori error estimates, stopping criteria, and adaptivity for multiphase compositional Darcy flows in porous media

In this paper we derive a posteriori error estimates for the compositional model of multiphase Darcy flow in porous media, consisting of a system of strongly coupled nonlinear unsteady partial differential and algebraic equations. We show how to control the dual norm of the residual augmented by a nonconformity evaluation term by fully computable estimators. We then decompose the estimators into the space, time, linearization, and algebraic error components. This allows to formulate criteria for stopping the iterative algebraic solver and the iterative linearization solver when the corresponding error components do not affect significantly the overall error. Moreover, the spatial and temporal error components can be balanced by time step and space mesh adaptation. Our analysis applies to a broad class of standard numerical methods, and is independent of the linearization and of the iterative algebraic solvers employed. We exemplify it for the two-point finite volume method with fully implicit Euler time stepping, the Newton linearization, and the GMRes algebraic solver. Numerical results on two real-life reservoir engineering examples confirm that significant computational gains can be achieved thanks to our adaptive stopping criteria, already on fixed meshes, without any noticeable loss of precision.

[1]  Kenneth Eriksson,et al.  Adaptive finite element methods for parabolic problems IV: nonlinear problems , 1995 .

[2]  Y. Kuznetsov,et al.  New mixed finite element method on polygonal and polyhedral meshes , 2005 .

[3]  Marie-Hélène Vignal Convergence of a finite volume scheme for an elliptic-hyperbolic system , 1996 .

[4]  J. Bear Dynamics of Fluids in Porous Media , 1975 .

[5]  Z. E. Heinemann,et al.  Using local grid refinement in a multiple-application reservoir simulator , 1983 .

[6]  A. Ern,et al.  Guaranteed and robust a posteriori error estimates and balancing discretization and linearization errors for monotone nonlinear problems , 2011 .

[7]  Martin Vohralík,et al.  Residual flux-based a posteriori error estimates for finite volume and related locally conservative methods , 2008, Numerische Mathematik.

[8]  K. H. Coats AN EQUATION OF STATE COMPOSITIONAL MODEL , 1980 .

[9]  William Gropp,et al.  Efficient Management of Parallelism in Object-Oriented Numerical Software Libraries , 1997, SciTools.

[10]  Zhangxin Chen Degenerate Two-Phase Incompressible Flow: I. Existence, Uniqueness and Regularity of a Weak Solution , 2001 .

[11]  Rüdiger Verfürth,et al.  A posteriori error estimates for nonlinear problems , 1994 .

[12]  Richard E. Ewing,et al.  The approximation of the pressure by a mixed method in the simulation of miscible displacement , 1983 .

[13]  Ivar Aavatsmark,et al.  Discretization on Unstructured Grids for Inhomogeneous, Anisotropic Media. Part I: Derivation of the Methods , 1998, SIAM J. Sci. Comput..

[14]  Jérôme Jaffré,et al.  Upstream differencing for multiphase flow in reservoir simulation , 1991 .

[15]  Raphaèle Herbin,et al.  Mathematical study of a petroleum-engineering scheme , 2003 .

[16]  Claire Chainais-Hillairet,et al.  Development of a refinement criterion for adaptive mesh refinement in steam-assisted gravity drainage simulation , 2011 .

[17]  M. Hestenes,et al.  Methods of conjugate gradients for solving linear systems , 1952 .

[18]  P. H. Sammon,et al.  Dynamic Grid Refinement and Amalgamation for Compositional Simulation , 2003 .

[19]  Ohannes A. Karakashian,et al.  A Posteriori Error Estimates for a Discontinuous Galerkin Approximation of Second-Order Elliptic Problems , 2003, SIAM J. Numer. Anal..

[20]  Manil Suri,et al.  Computable error estimators for the approximation of nonlinear problems by linearized models , 2006 .

[21]  Ricardo H. Nochetto,et al.  A posteriori error estimation and adaptivity for degenerate parabolic problems , 2000, Math. Comput..

[22]  Rüdiger Verfürth A posteriori error estimates for nonlinear problems. Lr(0, T; Lrho(Omega))-error estimates for finite element discretizations of parabolic equations , 1998, Math. Comput..

[23]  Martin Vohralík,et al.  Adaptive Inexact Newton Methods with A Posteriori Stopping Criteria for Nonlinear Diffusion PDEs , 2013, SIAM J. Sci. Comput..

[24]  M. Ohlberger,et al.  A posteriori error estimate for finite volume approximations to singularly perturbed nonlinear convection-diffusion equations , 2001, Numerische Mathematik.

[25]  H. Weinberger,et al.  An optimal Poincaré inequality for convex domains , 1960 .

[26]  Martin Vohralík,et al.  Adaptive regularization, linearization, and discretization and a posteriori error control for the two-phase Stefan problem , 2014, Math. Comput..

[27]  Clément Cancès,et al.  An a posteriori error estimate for vertex-centered finite volume discretizations of immiscible incompressible two-phase flow , 2013, Math. Comput..

[28]  Martin Vohralík,et al.  A Posteriori Error Estimates Including Algebraic Error and Stopping Criteria for Iterative Solvers , 2010, SIAM J. Sci. Comput..

[29]  R. Schuman Two-phase flows involving capillary barriers in heterogeneous porous media , 2009 .

[30]  Y. Kuznetsov,et al.  Mixed Finite Element Method on Polygonal and Polyhedral Meshes , 2003 .

[31]  Stephan Luckhaus,et al.  Flow of Oil and Water in a Porous Medium , 1984 .

[32]  B. Wohlmuth,et al.  MIXED FINITE ELEMENT METHODS: IMPLEMENTATION WITH ONE UNKNOWN PER ELEMENT, LOCAL FLUX EXPRESSIONS, POSITIVITY, POLYGONAL MESHES, AND RELATIONS TO OTHER METHODS , 2013 .

[33]  Alessio Porretta,et al.  Two-phase flows involving capillary barriers in heterogeneous porous media , 2009, 1005.5634.

[34]  Jérôme Droniou,et al.  The G method for heterogeneous anisotropic diffusion on general meshes , 2010 .

[35]  Rainer Helmig,et al.  Node-centered finite volume discretizations for the numerical simulation of multiphase flow in heterogeneous porous media , 2000 .

[36]  Michael G. Edwards,et al.  Finite volume discretization with imposed flux continuity for the general tensor pressure equation , 1998 .

[37]  Martin Vohralík,et al.  A posteriori error estimates, stopping criteria, and adaptivity for two-phase flows , 2013, Computational Geosciences.

[38]  S. N. Antont︠s︡ev,et al.  Boundary Value Problems in Mechanics of Nonhomogeneous Fluids , 1990 .

[39]  Ismael Herrera,et al.  Enhanced Oil Recovery , 2012 .

[40]  Todd Arbogast The existence of weak solutions to single porosity and simple dual-porosity models of two-phase incompressible flow , 1992 .

[41]  Mazen Saad,et al.  Degenerate two-phase compressible immiscible flow in porous media: The case where the density of each phase depends on its own pressure , 2011, Math. Comput. Simul..

[42]  R. Masson,et al.  A Symmetric and Coercive Finite Volume Scheme for Multiphase Porous Media Flow Problems with Applications in the Oil Industry , 2007 .

[43]  Zhangxin Chen,et al.  Analysis of a Compositional Model for Fluid Flow in Porous Media , 2000, SIAM J. Appl. Math..

[44]  Eva Farkas,et al.  General Purpose Compositional Model , 1985 .

[45]  Daniele A. Di Pietro,et al.  An extension of the Crouzeix-Raviart space to general meshes with application to quasi-incompressible linear elasticity and Stokes flow , 2014, Math. Comput..

[46]  L. Young,et al.  A Generalized Compositional Approach for Reservoir Simulation , 1983 .

[47]  Ann S. Almgren,et al.  A parallel second-order adaptive mesh algorithm for incompressible flow in porous media , 2008, Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences.

[48]  Thierry Gallouët,et al.  Finite volume method , 2010, Scholarpedia.

[49]  Zhangxin Chen,et al.  From Single-Phase to Compositional Flow: Applicability of Mixed Finite Elements , 1997 .

[50]  Long Chen FINITE VOLUME METHODS , 2011 .

[51]  J. Trangenstein Multi-scale iterative techniques and adaptive mesh refinement for flow in porous media , 2002 .

[52]  M. Bebendorf A Note on the Poincaré Inequality for Convex Domains , 2003 .

[53]  Richard E. Ewing,et al.  Efficient Use of Locally Refined Grids for Multiphase Reservoir Simulation , 1989 .

[54]  Mario Ohlberger,et al.  A posteriori error estimates for upwind finite volume schemes for nonlinear conservation laws in multi dimensions , 2000, Math. Comput..

[55]  I. Aavatsmark,et al.  Discretization on Non-Orthogonal, Curvilinear Grids for Multi-Phase Flow , 1994 .

[56]  Mladen Jurak,et al.  An existence result for a coupled system modeling a fully equivalent global pressure formulation for immiscible compressible two-phase flow in porous media , 2011 .

[57]  Yves Achdou,et al.  A priori and a posteriori analysis of finite volume discretizations of Darcy’s equations , 2003, Numerische Mathematik.

[58]  K. Aziz,et al.  Petroleum Reservoir Simulation , 1979 .

[59]  R. H. Brooks,et al.  Hydraulic properties of porous media , 1963 .

[60]  Rüdiger Verfürth,et al.  A posteriori error estimates for nonlinear problems. Lr(0, T; Lrho(Omega))-error estimates for finite element discretizations of parabolic equations , 1998, Math. Comput..

[61]  Kenneth Eriksson,et al.  Adaptive finite element methods for parabolic problems. I.: a linear model problem , 1991 .

[62]  Richard D. Hornung,et al.  Adaptive Mesh Refinement and Multilevel Iteration for Flow in Porous Media , 1997 .

[63]  Gene H. Golub,et al.  Estimates in quadratic formulas , 1994, Numerical Algorithms.

[64]  Jean E. Roberts,et al.  Mixed and hybrid finite element methods , 1987 .

[65]  Daniele Antonio Di Pietro,et al.  A Review of Recent Advances in Discretization Methods, a Posteriori Error Analysis, and Adaptive Algorithms for Numerical Modeling in Geosciences , 2014 .

[66]  G. Miel,et al.  On a posteriori error estimates , 1977 .

[67]  G. Chavent Mathematical models and finite elements for reservoir simulation , 1986 .

[68]  Martin Vohralík,et al.  A Posteriori Error Estimation Based on Potential and Flux Reconstruction for the Heat Equation , 2010, SIAM J. Numer. Anal..

[69]  George Shu Heng Pau,et al.  An adaptive mesh refinement algorithm for compressible two-phase flow in porous media , 2012, Computational Geosciences.

[70]  O. Lakkis,et al.  Gradient recovery in adaptive finite-element methods for parabolic problems , 2009, 0905.2764.

[71]  L. K. Hansen,et al.  Adaptive regularization , 1994, Proceedings of IEEE Workshop on Neural Networks for Signal Processing.

[72]  S. Thomas Enhanced Oil Recovery - An Overview , 2008 .

[73]  Yuri A. Kuznetsov Approximations with piece-wise constant fluxes for diffusion equations , 2011, J. Num. Math..

[74]  Roland Masson,et al.  Vertex-centred discretization of multiphase compositional Darcy flows on general meshes , 2012, Computational Geosciences.