A posteriori error estimates, stopping criteria, and adaptivity for multiphase compositional Darcy flows in porous media
暂无分享,去创建一个
Martin Vohralík | Eric Flauraud | Daniele A. Di Pietro | Soleiman Yousef | M. Vohralík | S. Yousef | D. D. Pietro | E. Flauraud
[1] Kenneth Eriksson,et al. Adaptive finite element methods for parabolic problems IV: nonlinear problems , 1995 .
[2] Y. Kuznetsov,et al. New mixed finite element method on polygonal and polyhedral meshes , 2005 .
[3] Marie-Hélène Vignal. Convergence of a finite volume scheme for an elliptic-hyperbolic system , 1996 .
[4] J. Bear. Dynamics of Fluids in Porous Media , 1975 .
[5] Z. E. Heinemann,et al. Using local grid refinement in a multiple-application reservoir simulator , 1983 .
[6] A. Ern,et al. Guaranteed and robust a posteriori error estimates and balancing discretization and linearization errors for monotone nonlinear problems , 2011 .
[7] Martin Vohralík,et al. Residual flux-based a posteriori error estimates for finite volume and related locally conservative methods , 2008, Numerische Mathematik.
[8] K. H. Coats. AN EQUATION OF STATE COMPOSITIONAL MODEL , 1980 .
[9] William Gropp,et al. Efficient Management of Parallelism in Object-Oriented Numerical Software Libraries , 1997, SciTools.
[10] Zhangxin Chen. Degenerate Two-Phase Incompressible Flow: I. Existence, Uniqueness and Regularity of a Weak Solution , 2001 .
[11] Rüdiger Verfürth,et al. A posteriori error estimates for nonlinear problems , 1994 .
[12] Richard E. Ewing,et al. The approximation of the pressure by a mixed method in the simulation of miscible displacement , 1983 .
[13] Ivar Aavatsmark,et al. Discretization on Unstructured Grids for Inhomogeneous, Anisotropic Media. Part I: Derivation of the Methods , 1998, SIAM J. Sci. Comput..
[14] Jérôme Jaffré,et al. Upstream differencing for multiphase flow in reservoir simulation , 1991 .
[15] Raphaèle Herbin,et al. Mathematical study of a petroleum-engineering scheme , 2003 .
[16] Claire Chainais-Hillairet,et al. Development of a refinement criterion for adaptive mesh refinement in steam-assisted gravity drainage simulation , 2011 .
[17] M. Hestenes,et al. Methods of conjugate gradients for solving linear systems , 1952 .
[18] P. H. Sammon,et al. Dynamic Grid Refinement and Amalgamation for Compositional Simulation , 2003 .
[19] Ohannes A. Karakashian,et al. A Posteriori Error Estimates for a Discontinuous Galerkin Approximation of Second-Order Elliptic Problems , 2003, SIAM J. Numer. Anal..
[20] Manil Suri,et al. Computable error estimators for the approximation of nonlinear problems by linearized models , 2006 .
[21] Ricardo H. Nochetto,et al. A posteriori error estimation and adaptivity for degenerate parabolic problems , 2000, Math. Comput..
[22] Rüdiger Verfürth. A posteriori error estimates for nonlinear problems. Lr(0, T; Lrho(Omega))-error estimates for finite element discretizations of parabolic equations , 1998, Math. Comput..
[23] Martin Vohralík,et al. Adaptive Inexact Newton Methods with A Posteriori Stopping Criteria for Nonlinear Diffusion PDEs , 2013, SIAM J. Sci. Comput..
[24] M. Ohlberger,et al. A posteriori error estimate for finite volume approximations to singularly perturbed nonlinear convection-diffusion equations , 2001, Numerische Mathematik.
[25] H. Weinberger,et al. An optimal Poincaré inequality for convex domains , 1960 .
[26] Martin Vohralík,et al. Adaptive regularization, linearization, and discretization and a posteriori error control for the two-phase Stefan problem , 2014, Math. Comput..
[27] Clément Cancès,et al. An a posteriori error estimate for vertex-centered finite volume discretizations of immiscible incompressible two-phase flow , 2013, Math. Comput..
[28] Martin Vohralík,et al. A Posteriori Error Estimates Including Algebraic Error and Stopping Criteria for Iterative Solvers , 2010, SIAM J. Sci. Comput..
[29] R. Schuman. Two-phase flows involving capillary barriers in heterogeneous porous media , 2009 .
[30] Y. Kuznetsov,et al. Mixed Finite Element Method on Polygonal and Polyhedral Meshes , 2003 .
[31] Stephan Luckhaus,et al. Flow of Oil and Water in a Porous Medium , 1984 .
[32] B. Wohlmuth,et al. MIXED FINITE ELEMENT METHODS: IMPLEMENTATION WITH ONE UNKNOWN PER ELEMENT, LOCAL FLUX EXPRESSIONS, POSITIVITY, POLYGONAL MESHES, AND RELATIONS TO OTHER METHODS , 2013 .
[33] Alessio Porretta,et al. Two-phase flows involving capillary barriers in heterogeneous porous media , 2009, 1005.5634.
[34] Jérôme Droniou,et al. The G method for heterogeneous anisotropic diffusion on general meshes , 2010 .
[35] Rainer Helmig,et al. Node-centered finite volume discretizations for the numerical simulation of multiphase flow in heterogeneous porous media , 2000 .
[36] Michael G. Edwards,et al. Finite volume discretization with imposed flux continuity for the general tensor pressure equation , 1998 .
[37] Martin Vohralík,et al. A posteriori error estimates, stopping criteria, and adaptivity for two-phase flows , 2013, Computational Geosciences.
[38] S. N. Antont︠s︡ev,et al. Boundary Value Problems in Mechanics of Nonhomogeneous Fluids , 1990 .
[39] Ismael Herrera,et al. Enhanced Oil Recovery , 2012 .
[40] Todd Arbogast. The existence of weak solutions to single porosity and simple dual-porosity models of two-phase incompressible flow , 1992 .
[41] Mazen Saad,et al. Degenerate two-phase compressible immiscible flow in porous media: The case where the density of each phase depends on its own pressure , 2011, Math. Comput. Simul..
[42] R. Masson,et al. A Symmetric and Coercive Finite Volume Scheme for Multiphase Porous Media Flow Problems with Applications in the Oil Industry , 2007 .
[43] Zhangxin Chen,et al. Analysis of a Compositional Model for Fluid Flow in Porous Media , 2000, SIAM J. Appl. Math..
[44] Eva Farkas,et al. General Purpose Compositional Model , 1985 .
[45] Daniele A. Di Pietro,et al. An extension of the Crouzeix-Raviart space to general meshes with application to quasi-incompressible linear elasticity and Stokes flow , 2014, Math. Comput..
[46] L. Young,et al. A Generalized Compositional Approach for Reservoir Simulation , 1983 .
[47] Ann S. Almgren,et al. A parallel second-order adaptive mesh algorithm for incompressible flow in porous media , 2008, Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences.
[48] Thierry Gallouët,et al. Finite volume method , 2010, Scholarpedia.
[49] Zhangxin Chen,et al. From Single-Phase to Compositional Flow: Applicability of Mixed Finite Elements , 1997 .
[50] Long Chen. FINITE VOLUME METHODS , 2011 .
[51] J. Trangenstein. Multi-scale iterative techniques and adaptive mesh refinement for flow in porous media , 2002 .
[52] M. Bebendorf. A Note on the Poincaré Inequality for Convex Domains , 2003 .
[53] Richard E. Ewing,et al. Efficient Use of Locally Refined Grids for Multiphase Reservoir Simulation , 1989 .
[54] Mario Ohlberger,et al. A posteriori error estimates for upwind finite volume schemes for nonlinear conservation laws in multi dimensions , 2000, Math. Comput..
[55] I. Aavatsmark,et al. Discretization on Non-Orthogonal, Curvilinear Grids for Multi-Phase Flow , 1994 .
[56] Mladen Jurak,et al. An existence result for a coupled system modeling a fully equivalent global pressure formulation for immiscible compressible two-phase flow in porous media , 2011 .
[57] Yves Achdou,et al. A priori and a posteriori analysis of finite volume discretizations of Darcy’s equations , 2003, Numerische Mathematik.
[58] K. Aziz,et al. Petroleum Reservoir Simulation , 1979 .
[59] R. H. Brooks,et al. Hydraulic properties of porous media , 1963 .
[60] Rüdiger Verfürth,et al. A posteriori error estimates for nonlinear problems. Lr(0, T; Lrho(Omega))-error estimates for finite element discretizations of parabolic equations , 1998, Math. Comput..
[61] Kenneth Eriksson,et al. Adaptive finite element methods for parabolic problems. I.: a linear model problem , 1991 .
[62] Richard D. Hornung,et al. Adaptive Mesh Refinement and Multilevel Iteration for Flow in Porous Media , 1997 .
[63] Gene H. Golub,et al. Estimates in quadratic formulas , 1994, Numerical Algorithms.
[64] Jean E. Roberts,et al. Mixed and hybrid finite element methods , 1987 .
[65] Daniele Antonio Di Pietro,et al. A Review of Recent Advances in Discretization Methods, a Posteriori Error Analysis, and Adaptive Algorithms for Numerical Modeling in Geosciences , 2014 .
[66] G. Miel,et al. On a posteriori error estimates , 1977 .
[67] G. Chavent. Mathematical models and finite elements for reservoir simulation , 1986 .
[68] Martin Vohralík,et al. A Posteriori Error Estimation Based on Potential and Flux Reconstruction for the Heat Equation , 2010, SIAM J. Numer. Anal..
[69] George Shu Heng Pau,et al. An adaptive mesh refinement algorithm for compressible two-phase flow in porous media , 2012, Computational Geosciences.
[70] O. Lakkis,et al. Gradient recovery in adaptive finite-element methods for parabolic problems , 2009, 0905.2764.
[71] L. K. Hansen,et al. Adaptive regularization , 1994, Proceedings of IEEE Workshop on Neural Networks for Signal Processing.
[72] S. Thomas. Enhanced Oil Recovery - An Overview , 2008 .
[73] Yuri A. Kuznetsov. Approximations with piece-wise constant fluxes for diffusion equations , 2011, J. Num. Math..
[74] Roland Masson,et al. Vertex-centred discretization of multiphase compositional Darcy flows on general meshes , 2012, Computational Geosciences.