Germline ATG2B/GSKIP-containing 14q32 duplication predisposes to early clonal hematopoiesis leading to myeloid neoplasms

[1]  P. Nguyen,et al.  Myelodysplastic syndromes , 2009, Nature Reviews Disease Primers.

[2]  Ivana V. Yang,et al.  Author Correction: Inherited causes of clonal haematopoiesis in 97,691 whole genomes , 2021, Nature.

[3]  F. Pasquier,et al.  ATG2B/GSKIP in de novo acute myeloid leukemia (AML): high prevalence of germline predisposition in French West Indies , 2021, Leukemia & lymphoma.

[4]  V. Ugo,et al.  Leukemic evolution of polycythemia vera and essential thrombocythemia: genomic profiles predict time to transformation. , 2020, Blood advances.

[5]  Ivana V. Yang,et al.  Inherited Causes of Clonal Hematopoiesis in 97,691 TOPMed Whole Genomes , 2020, Nature.

[6]  C. Deswarte,et al.  High prevalence of clonal hematopoiesis in the blood and bone marrow of healthy volunteers. , 2020, Blood advances.

[7]  M. Goodell,et al.  Clonal Hematopoiesis: Mechanisms Driving Dominance of Stem Cell Clones. , 2020, Blood.

[8]  M. Daly,et al.  Inherited myeloproliferative neoplasm risk impacts hematopoietic stem cells , 2020, Nature.

[9]  A. Rao,et al.  DNMT3A and TET2 mutations reshape hematopoiesis in opposing ways , 2020, Nature Genetics.

[10]  W. Vainchenker,et al.  Germline genetic factors in the pathogenesis of myeloproliferative neoplasms. , 2020, Blood reviews.

[11]  C. Bloomfield,et al.  Additional gene mutations may refine the 2017 European LeukemiaNet classification in adult patients with de novo acute myeloid leukemia aged <60 years , 2020, Leukemia.

[12]  Anna L. Brown,et al.  RUNX1-mutated families show phenotype heterogeneity and a somatic mutation profile unique to germline predisposed AML. , 2020, Blood advances.

[13]  Rafael C. Schulman,et al.  DNA methylation disruption reshapes the hematopoietic differentiation landscape , 2020, Nature Genetics.

[14]  G. Challen,et al.  Divergent Effects of Dnmt3a and Tet2 Mutations on Hematopoietic Progenitor Cell Fitness , 2020, Stem cell reports.

[15]  D. Steinemann,et al.  The complex genetic landscape of familial MDS and AML reveals pathogenic germline variants , 2020, Nature Communications.

[16]  D. Spencer,et al.  Inflammatory Cytokines Promote Clonal Hematopoiesis with Specific Mutations in Ulcerative Colitis Patients. , 2019, Experimental hematology.

[17]  J. Soulier,et al.  Germline DDX41 mutations define a significant entity within adult MDS/AML patients. , 2019, Blood.

[18]  A. Shimamura,et al.  Genetic predisposition to MDS: clinical features and clonal evolution. , 2019, Blood.

[19]  G. Sandusky,et al.  Inhibition of Inflammatory Signaling in Tet2 Mutant Preleukemic Cells Mitigates Stress-Induced Abnormalities and Clonal Hematopoiesis. , 2018, Cell stem cell.

[20]  P. Campbell,et al.  Classification and Personalized Prognosis in Myeloproliferative Neoplasms , 2018, The New England journal of medicine.

[21]  S. Fröhling,et al.  MBD4 guards against methylation damage and germ line deficiency predisposes to clonal hematopoiesis and early-onset AML. , 2018, Blood.

[22]  R. Houlston,et al.  Familial risks of acute myeloid leukemia, myelodysplastic syndromes, and myeloproliferative neoplasms. , 2018, Blood.

[23]  T. Olson,et al.  Germline duplication of ATG2B and GSKIP genes is not required for the familial myeloid malignancy syndrome associated with the duplication of chromosome 14q32 , 2018, Leukemia.

[24]  M. Dubé,et al.  Lineage restriction analyses in CHIP indicate myeloid bias for TET2 and multipotent stem cell origin for DNMT3A. , 2018, Blood.

[25]  Vu Dinh,et al.  Microbial signals drive pre-leukaemic myeloproliferation in a Tet2-deficient host , 2018, Nature.

[26]  J. Soulier,et al.  A landscape of germ line mutations in a cohort of inherited bone marrow failure patients. , 2018, Blood.

[27]  R. Wells,et al.  An inflammatory environment containing TNFα favors Tet2-mutant clonal hematopoiesis. , 2017, Experimental hematology.

[28]  Anna L. Brown,et al.  Duplication on Chromosome 14q Identified in Familial Predisposition to Myeloid Malignancies and Myeloproliferative Neoplasms , 2017 .

[29]  J. Churpek Familial myelodysplastic syndrome/acute myeloid leukemia. , 2017, Best practice & research. Clinical haematology.

[30]  M. Dubé,et al.  DNMT3A and TET2 dominate clonal hematopoiesis and demonstrate benign phenotypes and different genetic predispositions. , 2017, Blood.

[31]  L. Aaltonen,et al.  Whole-exome sequencing identifies novel candidate predisposition genes for familial polycythemia vera , 2017, Human Genomics.

[32]  Bob Löwenberg,et al.  Diagnosis and management of AML in adults: 2017 ELN recommendations from an international expert panel. , 2017, Blood.

[33]  P. Guglielmelli,et al.  Targeted deep sequencing in polycythemia vera and essential thrombocythemia. , 2016, Blood advances.

[34]  Nicholas Eriksson,et al.  Germ line variants predispose to both JAK2 V617F clonal hematopoiesis and myeloproliferative neoplasms. , 2016, Blood.

[35]  M. Cazzola,et al.  LNK mutations in familial myeloproliferative neoplasms. , 2016, Blood.

[36]  Nicola D. Roberts,et al.  Genomic Classification and Prognosis in Acute Myeloid Leukemia. , 2016, The New England journal of medicine.

[37]  Mario Cazzola,et al.  The 2016 revision to the World Health Organization classification of myeloid neoplasms and acute leukemia. , 2016, Blood.

[38]  P. Guglielmelli,et al.  Germline transmission of LNKE208Q variant in a family with myeloproliferative neoplasms , 2016, American journal of hematology.

[39]  T. Olson,et al.  Genetic predisposition to myelodysplastic syndrome and acute myeloid leukemia in children and young adults , 2016, Leukemia & lymphoma.

[40]  G. Superti-Furga,et al.  Germline RBBP6 mutations in familial myeloproliferative neoplasms. , 2016, Blood.

[41]  J. Gribben,et al.  Disease evolution and outcomes in familial AML with germline CEBPA mutations. , 2015, Blood.

[42]  F. Pasquier,et al.  Germline duplication of ATG2B and GSKIP predisposes to familial myeloid malignancies , 2015, Nature Genetics.

[43]  Paola Guglielmelli,et al.  Genetic variation at MECOM, TERT, JAK2 and HBS1L-MYB predisposes to myeloproliferative neoplasms , 2015, Nature Communications.

[44]  D. Neuberg,et al.  Acute myeloid leukemia ontogeny is defined by distinct somatic mutations. , 2015, Blood.

[45]  Daniel J Weisdorf,et al.  Acute Myeloid Leukemia. , 2015, The New England journal of medicine.

[46]  M. McCarthy,et al.  Age-related clonal hematopoiesis associated with adverse outcomes. , 2014, The New England journal of medicine.

[47]  S. Gabriel,et al.  Clonal hematopoiesis and blood-cancer risk inferred from blood DNA sequence. , 2014, The New England journal of medicine.

[48]  Joshua F. McMichael,et al.  Age-related cancer mutations associated with clonal hematopoietic expansion , 2014, Nature Medicine.

[49]  M. Cazzola,et al.  Common germline variation at the TERT locus contributes to familial clustering of myeloproliferative neoplasms , 2014, American journal of hematology.

[50]  G. Superti-Furga,et al.  Somatic mutations of calreticulin in myeloproliferative neoplasms. , 2013, The New England journal of medicine.

[51]  J. D. Fitzpatrick,et al.  Somatic CALR mutations in myeloproliferative neoplasms with nonmutated JAK2. , 2013, The New England journal of medicine.

[52]  M. Cazzola,et al.  The role of the JAK2 GGCC haplotype and the TET2 gene in familial myeloproliferative neoplasms , 2011, Haematologica.

[53]  A. Tichelli,et al.  Clonal analysis of TET2 and JAK2 mutations suggests that TET2 can be a late event in the progression of myeloproliferative neoplasms. , 2010, Blood.

[54]  W. Vainchenker,et al.  Analysis of the ten-eleven translocation 2 (TET2) gene in familial myeloproliferative neoplasms. , 2009, Blood.

[55]  Ashot Harutyunyan,et al.  A common JAK2 haplotype confers susceptibility to myeloproliferative neoplasms , 2009, Nature Genetics.

[56]  C. Pascutto,et al.  Prognostic factors for thrombosis, myelofibrosis, and leukemia in essential thrombocythemia: a study of 605 patients , 2008, Haematologica.

[57]  M. Björkholm,et al.  Increased risks of polycythemia vera, essential thrombocythemia, and myelofibrosis among 24,577 first-degree relatives of 11,039 patients with myeloproliferative neoplasms in Sweden. , 2008, Blood.

[58]  M. Cazzola,et al.  Familial chronic myeloproliferative disorders: clinical phenotype and evidence of disease anticipation. , 2007, Journal of clinical oncology : official journal of the American Society of Clinical Oncology.

[59]  C. Bloomfield,et al.  Proposals and rationale for revision of the World Health Organization diagnostic criteria for polycythemia vera, essential thrombocythemia, and primary myelofibrosis: recommendations from an ad hoc international expert panel. , 2007, Blood.

[60]  G. Thomas,et al.  Genetic and clinical implications of the Val617Phe JAK2 mutation in 72 families with myeloproliferative disorders. , 2006, Blood.

[61]  D. Stockton,et al.  Clonal hematopoiesis in familial polycythemia vera suggests the involvement of multiple mutational events in the early pathogenesis of the disease. , 2003, Blood.

[62]  H. Kantarjian,et al.  Acute myeloid leukemia , 2018, Methods in Molecular Biology.

[63]  A. Brebion,et al.  Incidence of hematological malignancies in Martinique, French West Indies, overrepresentation of multiple myeloma and adult T cell leukemia/lymphoma , 2001, Leukemia.