The neural network for tool-related cognition: An activation likelihood estimation meta-analysis of 70 neuroimaging contrasts

ABSTRACT The ability to recognize and use a variety of tools is an intriguing human cognitive function. Multiple neuroimaging studies have investigated neural activations with various types of tool-related tasks. In the present paper, we reviewed tool-related neural activations reported in 70 contrasts from 56 neuroimaging studies and performed a series of activation likelihood estimation (ALE) meta-analyses to identify tool-related cortical circuits dedicated either to general tool knowledge or to task-specific processes. The results indicate the following: (a) Common, task-general processing regions for tools are located in the left inferior parietal lobule (IPL) and ventral premotor cortex; and (b) task-specific regions are located in superior parietal lobule (SPL) and dorsal premotor area for imagining/executing actions with tools and in bilateral occipito-temporal cortex for recognizing/naming tools. The roles of these regions in task-general and task-specific activities are discussed with reference to evidence from neuropsychology, experimental psychology and other neuroimaging studies.

[1]  Alex Martin,et al.  Representation of Manipulable Man-Made Objects in the Dorsal Stream , 2000, NeuroImage.

[2]  R. K. Simpson Nature Neuroscience , 2022 .

[3]  I Law,et al.  Categorization and category effects in normal object recognition A PET Study , 2000, Neuropsychologia.

[4]  Rajesh K. Kana,et al.  Brain mechanisms of perceiving tools and imagining tool use acts: A functional MRI study , 2011, Neuropsychologia.

[5]  Tim Shallice,et al.  The different neural correlates of action and functional knowledge in semantic memory: an FMRI study. , 2008, Cerebral cortex.

[6]  D. Perani,et al.  Different neural systems for the recognition of animals and man‐made tools , 1995, Neuroreport.

[7]  Ravi S. Menon,et al.  Distinguishing subregions of the human MT+ complex using visual fields and pursuit eye movements. , 2001, Journal of neurophysiology.

[8]  Mia Liljeström,et al.  Perceiving and naming actions and objects , 2008, NeuroImage.

[9]  F. Lucchelli,et al.  Are Semantic Systems Separately Represented in the Brain? The Case of Living Category Impairment , 1994, Cortex.

[10]  JamesW. Lewis Cortical Networks Related to Human Use of Tools , 2006, The Neuroscientist : a review journal bringing neurobiology, neurology and psychiatry.

[11]  H Chertkow,et al.  Dissociable brain regions process object meaning and object structure during picture naming , 2002, Neuropsychologia.

[12]  G. Rizzolatti,et al.  Two different streams form the dorsal visual system: anatomy and functions , 2003, Experimental Brain Research.

[13]  Morris Moscovitch,et al.  Cognitive contributions of the ventral parietal cortex: an integrative theoretical account , 2012, Trends in Cognitive Sciences.

[14]  Leslie G. Ungerleider,et al.  Neural correlates of category-specific knowledge , 1996, Nature.

[15]  M. Farah,et al.  Can recognition of living things be selectively impaired , 1998 .

[16]  Scott H. Johnson-Frey The neural bases of complex tool use in humans , 2004, Trends in Cognitive Sciences.

[17]  G. Vingerhoets,et al.  Neural correlates of pantomiming familiar and unfamiliar tools: Action semantics versus mechanical problem solving? , 2011, Human brain mapping.

[18]  Iwan C. Pritchard,et al.  Animate and inanimate objects in human visual cortex: Evidence for task-independent category effects , 2009, Neuropsychologia.

[19]  Thomas W. James,et al.  Temporal and spatial integration of face, object, and scene features in occipito-temporal cortex , 2010, Brain and Cognition.

[20]  S. Wise,et al.  Effects of hand movement path on motor cortical activity in awake, behaving rhesus monkeys , 2004, Experimental Brain Research.

[21]  Scott T. Grafton,et al.  Premotor Cortex Activation during Observation and Naming of Familiar Tools , 1997, NeuroImage.

[22]  H. Damasio,et al.  Effects of noun–verb homonymy on the neural correlates of naming concrete entities and actions , 2005, Brain and Language.

[23]  Raymond H. Cuijpers,et al.  The role of inferior frontal and parietal areas in differentiating meaningful and meaningless object-directed actions , 2010, Brain Research.

[24]  Scott T. Grafton,et al.  Localization of grasp representations in humans by positron emission tomography , 1996, Experimental Brain Research.

[25]  Stefano F. Cappa,et al.  Word and picture matching: a PET study of semantic category effects , 1999, Neuropsychologia.

[26]  J. Kalaska,et al.  Neural Correlates of Reaching Decisions in Dorsal Premotor Cortex: Specification of Multiple Direction Choices and Final Selection of Action , 2005, Neuron.

[27]  D. Na,et al.  Functional magnetic resonance imaging during pantomiming tool-use gestures , 2001, Experimental Brain Research.

[28]  M. L. Lambon Ralph,et al.  Semantic impairment in stroke aphasia versus semantic dementia: a case-series comparison. , 2006, Brain : a journal of neurology.

[29]  M. L. Ralph,et al.  Different roles of lateral anterior temporal lobe and inferior parietal lobule in coding function and manipulation tool knowledge: Evidence from an rTMS study , 2011, Neuropsychologia.

[30]  E. Warrington,et al.  Categories of knowledge. Further fractionations and an attempted integration. , 1987, Brain : a journal of neurology.

[31]  John Hart,et al.  Neural subsystems for object knowledge , 1992, Nature.

[32]  Angela M. Uecker,et al.  ALE meta‐analysis: Controlling the false discovery rate and performing statistical contrasts , 2005, Human brain mapping.

[33]  Y. Rossetti,et al.  Optic ataxia and the function of the dorsal stream: Contributions to perception and action , 2009, Neuropsychologia.

[34]  A. Caramazza,et al.  WHAT ARE THE FACTS OF SEMANTIC CATEGORY-SPECIFIC DEFICITS? A CRITICAL REVIEW OF THE CLINICAL EVIDENCE , 2003, Cognitive neuropsychology.

[35]  M. Davare,et al.  Behavioral / Systems / Cognitive Dissociating the Role of Ventral and Dorsal Premotor Cortex in Precision Grasping , 2018 .

[36]  L. Buxbaum,et al.  Distinctions between manipulation and function knowledge of objects: evidence from functional magnetic resonance imaging. , 2005, Brain research. Cognitive brain research.

[37]  Toshiharu Nakai,et al.  An fMRI study of tool-use gestures: body part as object and pantomime , 2004, Neuroreport.

[38]  Simon B Eickhoff,et al.  Minimizing within‐experiment and within‐group effects in activation likelihood estimation meta‐analyses , 2012, Human brain mapping.

[39]  Leslie G. Ungerleider Two cortical visual systems , 1982 .

[40]  Kenneth M. Heilman,et al.  Apraxia : The Neuropsychology of Action , 2014 .

[41]  N. Kanwisher,et al.  Domain specificity in visual cortex. , 2006, Cerebral cortex.

[42]  L. Spinelli,et al.  Distinct mechanisms of form-from-motion perception in human extrastriate cortex , 2007, Neuropsychologia.

[43]  J. Talairach,et al.  Co-Planar Stereotaxic Atlas of the Human Brain: 3-Dimensional Proportional System: An Approach to Cerebral Imaging , 1988 .

[44]  J. Hermsdörfer,et al.  Neural representations of pantomimed and actual tool use: Evidence from an event-related fMRI study , 2007, NeuroImage.

[45]  J. Haxby,et al.  Parallel Visual Motion Processing Streams for Manipulable Objects and Human Movements , 2002, Neuron.

[46]  E Capitani,et al.  Progressive language impairment without dementia: a case with isolated category specific semantic defect. , 1988, Journal of neurology, neurosurgery, and psychiatry.

[47]  Alfonso Caramazza,et al.  Differential Activity for Animals and Manipulable Objects in the Anterior Temporal Lobes , 2011, Journal of Cognitive Neuroscience.

[48]  Tao Wu,et al.  The role of the dorsal stream for gesture production , 2006, NeuroImage.

[49]  Guy Vingerhoets,et al.  Knowing about tools: Neural correlates of tool familiarity and experience , 2008, NeuroImage.

[50]  M. Nawrot Disorders of motion and depth. , 2003, Neurologic clinics.

[51]  T. Schormann,et al.  Activation in the Ipsilateral Posterior Parietal Cortex during Tool Use: A PET Study , 2001, NeuroImage.

[52]  S. T. Grafton,et al.  Pouring or chilling a bottle of wine: an fMRI study on the prospective planning of object-directed actions , 2012, Experimental Brain Research.

[53]  A. Caramazza,et al.  Closely overlapping responses to tools and hands in left lateral occipitotemporal cortex. , 2012, Journal of neurophysiology.

[54]  Myrna F. Schwartz,et al.  Function and manipulation tool knowledge in apraxia: Knowing ‘what for’ but not ‘how’ , 2000 .

[55]  Hartwig R. Siebner,et al.  The left fusiform gyrus hosts trisensory representations of manipulable objects , 2011, NeuroImage.

[56]  M. Brett,et al.  Actions Speak Louder Than Functions: The Importance of Manipulability and Action in Tool Representation , 2003, Journal of Cognitive Neuroscience.

[57]  D. Plaut,et al.  The interaction of spatial reference frames and hierarchical object representations: Evidence from figure copying in hemispatial neglect , 2001, Cognitive, affective & behavioral neuroscience.

[58]  N. Sadato,et al.  Naming of animals and tools: a functional magnetic resonance imaging study of categorical differences in the human brain areas commonly used for naming visually presented objects , 2000, Neuroscience Letters.

[59]  Terry M. Peters,et al.  3D statistical neuroanatomical models from 305 MRI volumes , 1993, 1993 IEEE Conference Record Nuclear Science Symposium and Medical Imaging Conference.

[60]  D. J. Felleman,et al.  Distributed hierarchical processing in the primate cerebral cortex. , 1991, Cerebral cortex.

[61]  N. Kanwisher,et al.  Location and spatial profile of category‐specific regions in human extrastriate cortex , 2006, Human brain mapping.

[62]  W. Perlstein,et al.  Neural substrates of object identification: Functional magnetic resonance imaging evidence that category and visual attribute contribute to semantic knowledge , 2009, Journal of the International Neuropsychological Society.

[63]  Emily J. Mayberry,et al.  Coherent concepts are computed in the anterior temporal lobes , 2010, Proceedings of the National Academy of Sciences.

[64]  B. Wandell,et al.  Visual field maps, population receptive field sizes, and visual field coverage in the human MT+ complex. , 2009, Journal of neurophysiology.

[65]  Karl J. Friston,et al.  The neural regions sustaining object recognition and naming , 1996, Proceedings of the Royal Society of London. Series B: Biological Sciences.

[66]  Alex Martin,et al.  Experience-dependent modulation of category-related cortical activity. , 2002, Cerebral cortex.

[67]  A. Damasio,et al.  A neural basis for lexical retrieval , 1996, Nature.

[68]  Leslie G. Ungerleider,et al.  Discrete Cortical Regions Associated with Knowledge of Color and Knowledge of Action , 1995, Science.

[69]  Jean-François Démonet,et al.  Mental representations of action: The neural correlates of the verbal and motor components , 2010, Brain Research.

[70]  Adrienne D. Moll,et al.  Abnormal reliance on object structure in apraxics' learning of novel object-related actions , 2007, Journal of the International Neuropsychological Society.

[71]  M. Kiyosawa,et al.  Functional neuroanatomy of visual object naming: a PET study , 1996, Graefe's Archive for Clinical and Experimental Ophthalmology.

[72]  Toshio Inui,et al.  Differences Between Actual and Imagined Usage of Chopsticks: an FMRI Study , 2007, Cortex.

[73]  Melvyn A. Goodale,et al.  Category-specific neural processing for naming pictures of animals and naming pictures of tools: An ALE meta-analysis , 2010, Neuropsychologia.

[74]  Erminio Capitani,et al.  Apraxia is not associated to a disproportionate naming impairment for manipulable objects , 2003, Brain and Cognition.

[75]  Talma Hendler,et al.  Eccentricity Bias as an Organizing Principle for Human High-Order Object Areas , 2002, Neuron.

[76]  Scott T. Grafton,et al.  Graspable objects grab attention when the potential for action is recognized , 2003, Nature Neuroscience.

[77]  Jody C. Culham,et al.  Does tool-related fMRI activity within the intraparietal sulcus reflect the plan to grasp? , 2007, NeuroImage.

[78]  M Hallett,et al.  Gesture subtype-dependent left lateralization of praxis planning: an event-related fMRI study. , 2009, Cerebral cortex.

[79]  A. Caramazza,et al.  Category-specific naming and comprehension impairment: a double dissociation. , 1991, Brain : a journal of neurology.

[80]  T. Shallice,et al.  Category specific semantic impairments , 1984 .

[81]  J. Haxby,et al.  Attribute-based neural substrates in temporal cortex for perceiving and knowing about objects , 1999, Nature Neuroscience.

[82]  Guinevere F. Eden,et al.  Meta-Analysis of the Functional Neuroanatomy of Single-Word Reading: Method and Validation , 2002, NeuroImage.

[83]  Sarah H. Creem-Regehr,et al.  Neural representations of graspable objects: are tools special? , 2005, Brain research. Cognitive brain research.

[84]  Marc Brysbaert,et al.  Praxis and language are linked: Evidence from co-lateralization in individuals with atypical language dominance , 2013, Cortex.

[85]  G. Goldenberg,et al.  The neural basis of tool use. , 2009, Brain : a journal of neurology.

[86]  Hanna Damasio,et al.  Premotor and Prefrontal Correlates of Category-Related Lexical Retrieval , 1998, NeuroImage.

[87]  M. Goodale,et al.  Separate visual pathways for perception and action , 1992, Trends in Neurosciences.

[88]  T. Chaminade,et al.  The evolutionary neuroscience of tool making , 2007, Neuropsychologia.

[89]  E. Capitani,et al.  A Case of Prevailing Deficit of Nonliving Categories or a Case of Prevailing Sparing of Living Categories? , 2001, Cognitive neuropsychology.

[90]  M. L. Lambon Ralph,et al.  Category-Specific versus Category-General Semantic Impairment Induced by Transcranial Magnetic Stimulation , 2010, Current Biology.

[91]  L. Buxbaum,et al.  Action knowledge, visuomotor activation, and embodiment in the two action systems , 2010, Annals of the New York Academy of Sciences.

[92]  K. Zilles,et al.  Coordinate‐based activation likelihood estimation meta‐analysis of neuroimaging data: A random‐effects approach based on empirical estimates of spatial uncertainty , 2009, Human brain mapping.

[93]  J. Haxby,et al.  fMRI Responses to Video and Point-Light Displays of Moving Humans and Manipulable Objects , 2003, Journal of Cognitive Neuroscience.

[94]  L. Buxbaum,et al.  Knowledge of object manipulation and object function: dissociations in apraxic and nonapraxic subjects , 2002, Brain and Language.

[95]  Angela R. Laird,et al.  Activation likelihood estimation meta-analysis revisited , 2012, NeuroImage.

[96]  Gereon R. Fink,et al.  Common and Differential Neural Mechanisms Supporting Imitation of Meaningful and Meaningless Actions , 2005, Journal of Cognitive Neuroscience.

[97]  Sharon L. Thompson-Schill,et al.  Conceptual Representations of Action in the Lateral Temporal Cortex , 2005, Journal of Cognitive Neuroscience.

[98]  Y. Rossetti,et al.  Optic ataxia revisited: visually guided action versus immediate visuomotor control. , 2003, Experimental brain research.

[99]  M. Rizzo,et al.  First and second-order motion perception after focal human brain lesions , 2008, Vision Research.

[100]  Talma Hendler,et al.  Center–periphery organization of human object areas , 2001, Nature Neuroscience.

[101]  E. Procyk,et al.  Brain activity during observation of actions. Influence of action content and subject's strategy. , 1997, Brain : a journal of neurology.

[102]  M. Moscovitch,et al.  Distinct neural correlates of visual long-term memory for spatial location and object identity: a positron emission tomography study in humans. , 1995, Proceedings of the National Academy of Sciences of the United States of America.

[103]  D. Collins,et al.  Automatic 3D Intersubject Registration of MR Volumetric Data in Standardized Talairach Space , 1994, Journal of computer assisted tomography.

[104]  Bradford Z. Mahon,et al.  The organization of conceptual knowledge: the evidence from category-specific semantic deficits , 2003, Trends in Cognitive Sciences.

[105]  Karl J. Friston,et al.  Anatomic Constraints on Cognitive Theories of Category Specificity , 2002, NeuroImage.

[106]  Gina F. Humphreys,et al.  Fusion and Fission of Cognitive Functions in the Human Parietal Cortex , 2014, Cerebral cortex.

[107]  Christian Gerlach,et al.  A Review of Functional Imaging Studies on Category Specificity , 2007, Journal of Cognitive Neuroscience.

[108]  D Yves von Cramon,et al.  Premotor cortex in observing erroneous action: an fMRI study. , 2003, Brain research. Cognitive brain research.

[109]  T. Rogers,et al.  Where do you know what you know? The representation of semantic knowledge in the human brain , 2007, Nature Reviews Neuroscience.

[110]  K. Luan Phan,et al.  Valence, gender, and lateralization of functional brain anatomy in emotion: a meta-analysis of findings from neuroimaging , 2003, NeuroImage.

[111]  Bradford Z. Mahon,et al.  What drives the organization of object knowledge in the brain? , 2011, Trends in Cognitive Sciences.

[112]  Bradford Z. Mahon,et al.  Concepts and categories: a cognitive neuropsychological perspective. , 2009, Annual review of psychology.

[113]  Scott T. Grafton,et al.  Actions or Hand-Object Interactions? Human Inferior Frontal Cortex and Action Observation , 2003, Neuron.

[114]  G. Goldenberg Apraxia and the parietal lobes , 2009, Neuropsychologia.

[115]  Frank E. Garcea,et al.  Parcellation of left parietal tool representations by functional connectivity , 2014, Neuropsychologia.

[116]  Eric Achten,et al.  Tool responsive regions in the posterior parietal cortex: Effect of differences in motor goal and target object during imagined transitive movements , 2009, NeuroImage.

[117]  Glyn W. Humphreys,et al.  The Neural Selection and Integration of Actions and Objects: An fMRI Study , 2012, Journal of Cognitive Neuroscience.

[118]  J. Decety,et al.  Does visual perception of object afford action? Evidence from a neuroimaging study , 2002, Neuropsychologia.

[119]  Lang Chen,et al.  A Model of Emergent Category-specific Activation in the Posterior Fusiform Gyrus of Sighted and Congenitally Blind Populations , 2015, Journal of Cognitive Neuroscience.

[120]  Gereon R. Fink,et al.  Neural basis of pantomiming the use of visually presented objects , 2004, NeuroImage.

[121]  Glyn W. Humphreys,et al.  Action relationships concatenate representations of separate objects in the ventral visual system , 2010, NeuroImage.

[122]  Glyn W. Humphreys,et al.  The neural substrates of action retrieval: An examination of semantic and visual routes to action , 2002 .