EMI resisting MOSFET-only voltage reference based on ZTC condition

Electromagnetic interference (EMI) can significantly degrades the performance of analog circuits, including voltage and current references, especially due to their limited power supply rejection. An EMI resistant MOSFET-only voltage reference is herein proposed, based on the MOSFET zero temperature coefficient (ZTC) vicinity condition. The ZTC condition is analytically derived through a continuous MOSFET model that is valid from weak to strong inversion, also a design methodology is presented. The final circuit is designed in a 130 nm process and occupies around 0.0075 mm$$^{2}$$2 of silicon area while consuming just 10.3 $$\upmu$$μW. Post-layout simulations present a 395 mV reference voltage ($$V_{REF}$$VREF) with a effective temperature coefficient ($$TC_{eff}$$TCeff) of 146 ppm/°C, for a temperature range from −55 to +125 °C. A 4 dBm (1 $$V_{pp}$$Vpp amplitude) EMI source injected into the power supply, according to direct power injection standard [1], results in a maximum DC Shift and peak-to-peak ripple of −1.7 % and 35.8 m$$V_{pp}$$Vpp, respectively. The proposed voltage reference has already been fabricated and is under preliminary measurements, presenting a maximum variation of 21 mV for a 600 mV minimum supply.

[1]  R. J. Widlar,et al.  New developments in IC voltage regulators , 1970 .

[2]  H. Grubin The physics of semiconductor devices , 1979, IEEE Journal of Quantum Electronics.

[3]  I. Filanovsky,et al.  Mutual compensation of mobility and threshold voltage temperature effects with applications in CMOS circuits , 2001 .

[4]  Gaetano Palumbo,et al.  A detailed analysis of power-supply noise attenuation in bandgap voltage references , 2003 .

[5]  Jean-Michel Redoute,et al.  Current mirror structure insensitive to conducted EMI , 2005 .

[6]  L. Colalongo,et al.  Reduction of EMI Susceptibility in CMOS Bandgap Reference Circuits , 2006, IEEE Transactions on Electromagnetic Compatibility.

[7]  D.M. Binkley,et al.  Tradeoffs and Optimization in Analog CMOS Design , 2008, 2007 14th International Conference on Mixed Design of Integrated Circuits and Systems.

[8]  Giuseppe de Vita,et al.  A Sub-1-V, 10 ppm/ $^{\circ}$C, Nanopower Voltage Reference Generator , 2007, IEEE Journal of Solid-State Circuits.

[9]  S. Buso,et al.  Reducing the EMI Susceptibility of a Kuijk Bandgap , 2008, IEEE Transactions on Electromagnetic Compatibility.

[10]  Michiel Steyaert,et al.  EMC of Analog Integrated Circuits , 2009 .

[11]  Y. Amemiya,et al.  A 300 nW, 15 ppm/$^{\circ}$C, 20 ppm/V CMOS Voltage Reference Circuit Consisting of Subthreshold MOSFETs , 2009, IEEE Journal of Solid-State Circuits.

[12]  Carlos Galup-Montoro,et al.  CMOS Analog Design Using All-Region MOSFET Modeling: Advanced MOS transistor modeling , 2010 .

[13]  Michiel Steyaert,et al.  Kuijk Bandgap Voltage Reference With High Immunity to EMI , 2010, IEEE Transactions on Circuits and Systems II: Express Briefs.

[14]  Márcio C. Schneider,et al.  Design of a temperature-compensated voltage reference based on the MOSFET threshold voltage , 2011, SBCCI '11.

[15]  Giuseppe Iannaccone,et al.  A 2.6 nW, 0.45 V Temperature-Compensated Subthreshold CMOS Voltage Reference , 2011, IEEE Journal of Solid-State Circuits.

[16]  M. Bucher,et al.  Temperature scaling of CMOS analog design parameters , 2012, 2012 16th IEEE Mediterranean Electrotechnical Conference.

[17]  Sergio Bampi,et al.  A resistorless switched bandgap voltage reference with offset cancellation , 2013, 2013 26th Symposium on Integrated Circuits and Systems Design (SBCCI).

[18]  Sergio Bampi,et al.  0.7 V supply, 8 nW, 8 ppm/°C resistorless sub-bandgap voltage reference , 2014, 2014 IEEE 57th International Midwest Symposium on Circuits and Systems (MWSCAS).

[19]  Pui-In Mak,et al.  A 104μW EMI-resisting bandgap voltage reference achieving −20dB PSRR, and 5% DC shift under a 4dBm EMI level , 2014, 2014 IEEE Asia Pacific Conference on Circuits and Systems (APCCAS).

[20]  Sergio Bampi,et al.  Self-biased CMOS current reference based on the ZTC operation condition , 2014, 2014 27th Symposium on Integrated Circuits and Systems Design (SBCCI).

[21]  Sergio Bampi,et al.  2.3 ppm/°C 40 nW MOSFET-only voltage reference , 2014, 2014 IEEE/ACM International Symposium on Low Power Electronics and Design (ISLPED).

[22]  Sergio Bampi,et al.  0.9 V, 5 nW, 9 ppm/oC resistorless sub-bandgap voltage reference in 0.18μm CMOS , 2014, 2014 IEEE 5th Latin American Symposium on Circuits and Systems.

[23]  David Cordova,et al.  A low-voltage current reference with high immunity to EMI , 2014, 2014 27th Symposium on Integrated Circuits and Systems Design (SBCCI).

[24]  Sergio Bampi,et al.  0.5 V supply voltage reference based on the MOSFET ZTC condition , 2015, 2015 28th Symposium on Integrated Circuits and Systems Design (SBCCI).

[25]  Sergio Bampi,et al.  CMOS transconductor analysis for low temperature sensitivity based on ZTC MOSFET condition , 2015, 2015 28th Symposium on Integrated Circuits and Systems Design (SBCCI).

[26]  Sergio Bampi,et al.  Resistorless switched-capacitor current reference based on the MOSFET ZTC condition , 2015, 2015 IEEE 6th Latin American Symposium on Circuits & Systems (LASCAS).

[27]  O. E. Mattia,et al.  Sub-1 V supply 5 nW 11 ppm/°C resistorless sub-bandgap voltage reference , 2015 .