Structural basis of lantibiotic recognition by the nisin resistance protein from Streptococcus agalactiae

Lantibiotics are potent antimicrobial peptides. Nisin is the most prominent member and contains five crucial lanthionine rings. Some clinically relevant bacteria express membrane-associated resistance proteins that proteolytically inactivate nisin. However, substrate recognition and specificity of these proteins is unknown. Here, we report the first three-dimensional structure of a nisin resistance protein from Streptococcus agalactiae (SaNSR) at 2.2 Å resolution. It contains an N-terminal helical bundle, and protease cap and core domains. The latter harbors the highly conserved TASSAEM region, which lies in a hydrophobic tunnel formed by all domains. By integrative modeling, mutagenesis studies, and genetic engineering of nisin variants, a model of the SaNSR/nisin complex is generated, revealing that SaNSR recognizes the last C-terminally located lanthionine ring of nisin. This determines the substrate specificity of SaNSR and ensures the exact coordination of the nisin cleavage site at the TASSAEM region.

[1]  Holger Gohlke,et al.  Hot Spots and Transient Pockets: Predicting the Determinants of Small-Molecule Binding to a Protein-Protein Interface , 2012, J. Chem. Inf. Model..

[2]  M. Page,et al.  Serine peptidases: Classification, structure and function , 2008, Cellular and Molecular Life Sciences.

[3]  Rodrigo Lopez,et al.  Clustal W and Clustal X version 2.0 , 2007, Bioinform..

[4]  Oscar P. Kuipers,et al.  Specific Binding of Nisin to the Peptidoglycan Precursor Lipid II Combines Pore Formation and Inhibition of Cell Wall Biosynthesis for Potent Antibiotic Activity* , 2001, The Journal of Biological Chemistry.

[5]  P. Kollman,et al.  Continuum Solvent Studies of the Stability of DNA, RNA, and Phosphoramidate−DNA Helices , 1998 .

[6]  P. Emsley,et al.  Features and development of Coot , 2010, Acta crystallographica. Section D, Biological crystallography.

[7]  B. de Kruijff,et al.  Lipid II induces a transmembrane orientation of the pore-forming peptide lantibiotic nisin. , 2002, Biochemistry.

[8]  Randy J. Read,et al.  Acta Crystallographica Section D Biological , 2003 .

[9]  D. Case,et al.  Insights into protein-protein binding by binding free energy calculation and free energy decomposition for the Ras-Raf and Ras-RalGDS complexes. , 2003, Journal of molecular biology.

[10]  K. Baldwin,et al.  Conjugative 40-megadalton plasmid in Streptococcus lactis subsp. diacetylactis DRC3 is associated with resistance to nisin and bacteriophage , 1984, Applied and environmental microbiology.

[11]  G. Bierbaum,et al.  Lantibiotics: promising candidates for future applications in health care. , 2014, International journal of medical microbiology : IJMM.

[12]  H. Sahl,et al.  Lantibiotics: mode of action, biosynthesis and bioengineering. , 2009, Current pharmaceutical biotechnology.

[13]  Xiaobo Liang,et al.  Novel Mechanism for Nisin Resistance via Proteolytic Degradation of Nisin by the Nisin Resistance Protein NSR , 2009, Antimicrobial Agents and Chemotherapy.

[14]  Yongcheng Wang,et al.  Crystal structure of a rhomboid family intramembrane protease , 2006, Nature.

[15]  Liisa Holm,et al.  Dali server: conservation mapping in 3D , 2010, Nucleic Acids Res..

[16]  W. A. van der Donk,et al.  Post-translational modifications during lantibiotic biosynthesis. , 2004, Current opinion in chemical biology.

[17]  John D Lambris,et al.  A Structurally Dynamic N-terminal Helix Is a Key Functional Determinant in Staphylococcal Complement Inhibitor (SCIN) Proteins* , 2012, The Journal of Biological Chemistry.

[18]  D. Linke,et al.  Distinct mechanisms contribute to immunity in the lantibiotic NAI-107 producer strain Microbispora ATCC PTA-5024. , 2016, Environmental microbiology.

[19]  D. Rudner,et al.  CtpB Assembles a Gated Protease Tunnel Regulating Cell-Cell Signaling during Spore Formation in Bacillus subtilis , 2013, Cell.

[20]  V. Hornak,et al.  Comparison of multiple Amber force fields and development of improved protein backbone parameters , 2006, Proteins.

[21]  P. Kollman,et al.  A Second Generation Force Field for the Simulation of Proteins, Nucleic Acids, and Organic Molecules , 1995 .

[22]  P. Kollman,et al.  A well-behaved electrostatic potential-based method using charge restraints for deriving atomic char , 1993 .

[23]  B. Diner,et al.  Crystal structures of the photosystem II D1 C-terminal processing protease , 2000, Nature Structural Biology.

[24]  C. Ghio,et al.  Force field parameters for molecular mechanical simulation of dehydroamino acid residues , 1991 .

[25]  M. Hodel,et al.  The three-dimensional structure of the autoproteolytic, nuclear pore-targeting domain of the human nucleoporin Nup98. , 2002, Molecular cell.

[26]  W. A. van der Donk,et al.  Biosynthesis and mode of action of lantibiotics. , 2005, Chemical reviews.

[27]  Serge X. Cohen,et al.  Automated macromolecular model building for X-ray crystallography using ARP/wARP version 7 , 2008, Nature Protocols.

[28]  W. L. Jorgensen,et al.  Comparison of simple potential functions for simulating liquid water , 1983 .

[29]  C. Cao,et al.  The C-terminal Helices of Heat Shock Protein 70 Are Essential for J-domain Binding and ATPase Activation* , 2012, The Journal of Biological Chemistry.

[30]  E. Breukink,et al.  Lipid II as a target for antibiotics , 2006, Nature Reviews Drug Discovery.

[31]  O. Kuipers,et al.  NisC binds the FxLx motif of the nisin leader peptide. , 2013, Biochemistry.

[32]  R. Huber,et al.  Navigation inside a protease: substrate selection and product exit in the tricorn protease from Thermoplasma acidophilum. , 2002, Journal of molecular biology.

[33]  H. Sahl,et al.  Engineering of a novel thioether bridge and role of modified residues in the lantibiotic Pep5 , 1996, Applied and environmental microbiology.

[34]  S. Levy Antibiotic resistance: consequences of inaction. , 2001, Clinical infectious diseases : an official publication of the Infectious Diseases Society of America.

[35]  Gordon A Leonard,et al.  ID29: a high-intensity highly automated ESRF beamline for macromolecular crystallography experiments exploiting anomalous scattering. , 2012, Journal of synchrotron radiation.

[36]  K. Lewis,et al.  A new antibiotic kills pathogens without detectable resistance , 2015, Nature.

[37]  P. Kollman,et al.  A Second Generation Force Field for the Simulation of Proteins, Nucleic Acids, and Organic Molecules J. Am. Chem. Soc. 1995, 117, 5179−5197 , 1996 .

[38]  T. Zendo,et al.  Three Distinct Two-Component Systems Are Involved in Resistance to the Class I Bacteriocins, Nukacin ISK-1 and Nisin A, in Staphylococcus aureus , 2013, PloS one.

[39]  Xavier Robert,et al.  Deciphering key features in protein structures with the new ENDscript server , 2014, Nucleic Acids Res..

[40]  Daniel R Roe,et al.  PTRAJ and CPPTRAJ: Software for Processing and Analysis of Molecular Dynamics Trajectory Data. , 2013, Journal of chemical theory and computation.

[41]  H. Sahl,et al.  Mode of action of modified and unmodified bacteriocins from Gram-positive bacteria. , 2002, Biochimie.

[42]  S. Smits,et al.  The C-terminus of nisin is important for the ABC transporter NisFEG to confer immunity in Lactococcus lactis , 2014, MicrobiologyOpen.

[43]  J. Willey,et al.  Lantibiotics: peptides of diverse structure and function. , 2007, Annual review of microbiology.

[44]  Duncan Poole,et al.  Routine Microsecond Molecular Dynamics Simulations with AMBER on GPUs. 2. Explicit Solvent Particle Mesh Ewald. , 2013, Journal of chemical theory and computation.

[45]  W. Delano The PyMOL Molecular Graphics System , 2002 .

[46]  K. Entian,et al.  The First Structure of a Lantibiotic Immunity Protein, SpaI from Bacillus subtilis, Reveals a Novel Fold* , 2012, The Journal of Biological Chemistry.

[47]  A. Driessen,et al.  Substrate Recognition and Specificity of the NisB Protein, the Lantibiotic Dehydratase Involved in Nisin Biosynthesis* , 2011, The Journal of Biological Chemistry.

[48]  N. Dunn,et al.  Identification and characterization of a mobilizing plasmid, pND300, in Lactococcus lactis M189 and its encoded nisin resistance determinant. , 1996, The Journal of applied bacteriology.

[49]  Vincent B. Chen,et al.  Correspondence e-mail: , 2000 .

[50]  Holger Gohlke,et al.  Converging free energy estimates: MM‐PB(GB)SA studies on the protein–protein complex Ras–Raf , 2004, J. Comput. Chem..

[51]  Arne Elofsson,et al.  TOPCONS: consensus prediction of membrane protein topology , 2009, Nucleic Acids Res..

[52]  K. Sharp,et al.  Accurate Calculation of Hydration Free Energies Using Macroscopic Solvent Models , 1994 .

[53]  R. P. Ross,et al.  Lantibiotic Resistance , 2015, Microbiology and Molecular Reviews.

[54]  S. Smits,et al.  NSR from Streptococcus agalactiae confers resistance against nisin and is encoded by a conserved nsr operon , 2013, Biological chemistry.

[55]  Victor S Lamzin,et al.  On the combination of molecular replacement and single-wavelength anomalous diffraction phasing for automated structure determination. , 2009, Acta crystallographica. Section D, Biological crystallography.

[56]  Yue Li,et al.  Structural determinants of host specificity of complement Factor H recruitment by Streptococcus pneumoniae. , 2015, The Biochemical journal.

[57]  T. Darden,et al.  The effect of long‐range electrostatic interactions in simulations of macromolecular crystals: A comparison of the Ewald and truncated list methods , 1993 .

[58]  R. Hancock,et al.  Antimicrobial and host-defense peptides as new anti-infective therapeutic strategies , 2006, Nature Biotechnology.

[59]  R. Kaptein,et al.  The nisin–lipid II complex reveals a pyrophosphate cage that provides a blueprint for novel antibiotics , 2004, Nature Structural &Molecular Biology.

[60]  L. Mckay,et al.  Molecular characterization of the nisin resistance region of Lactococcus lactis subsp. lactis biovar diacetylactis DRC3 , 1991, Applied and environmental microbiology.

[61]  H. Sahl,et al.  Lantibiotics: biosynthesis and biological activities of uniquely modified peptides from gram-positive bacteria. , 1998, Annual review of microbiology.

[62]  J. Stindt,et al.  Easy and Rapid Purification of Highly Active Nisin , 2011, International journal of peptides.

[63]  S. Smits,et al.  Overexpression, purification, crystallization and preliminary X-ray diffraction of the nisin resistance protein from Streptococcus agalactiae. , 2015, Acta crystallographica. Section F, Structural biology communications.

[64]  G. Ciccotti,et al.  Numerical Integration of the Cartesian Equations of Motion of a System with Constraints: Molecular Dynamics of n-Alkanes , 1977 .

[65]  T. Klaenhammer,et al.  Conjugal transfer from Streptococcus lactis ME2 of plasmids encoding phage resistance, nisin resistance and lactose-fermenting ability: evidence for a high-frequency conjugative plasmid responsible for abortive infection of virulent bacteriophage. , 1985, Journal of general microbiology.

[66]  H. Gohlke,et al.  Free Energy Calculations by the Molecular Mechanics Poisson−Boltzmann Surface Area Method , 2012, Molecular informatics.

[67]  T. Darden,et al.  Particle mesh Ewald: An N⋅log(N) method for Ewald sums in large systems , 1993 .

[68]  O. Kuipers,et al.  Use of the cell wall precursor lipid II by a pore-forming peptide antibiotic. , 1999, Science.

[69]  B. de Kruijff,et al.  Assembly and stability of nisin-lipid II pores. , 2004, Biochemistry.