Osteoarthritis: cellular and molecular changes in degenerating cartilage.

Osteoarthritis (OA) is a disease of high ethical and economical importance. In advanced stages, the patients suffer from severe pain and restriction of mobility. The consequence in many cases is an inability to work and often the substitution of the diseased joint with an artificial implant becomes inevitable. As cartilage tissue itself has only very limited capacities of self-renewing, the development of this disorder is chronic and progressive. Generally, OA is diagnosed in more advanced stages, when clinical and radiographic signs become evident. At this time point the options for therapeutic intervention without surgery are limited. It is, therefore, crucial to know about the basic incidents in the course of OA and especially in early stages to develop new diagnostic and therapeutic strategies. Numerous studies on human osteoarthritic tissue and in animal models have addressed various aspects of OA progression to get a better understanding of the pathophysiology of this disease. This review presents an overview on different aspects of OA research and the cellular and molecular alterations in degenerating cartilage.

[1]  E. Vignon,et al.  Assessment of specific mRNA levels in cartilage regions in a lapine model of osteoarthritis , 2002, Journal of orthopaedic research : official publication of the Orthopaedic Research Society.

[2]  Matthias Chiquet,et al.  Tenascins: regulation and putative functions during pathological stress , 2003, The Journal of pathology.

[3]  T. Aigner,et al.  Activation of collagen type II expression in osteoarthritic and rheumatoid cartilage , 1992, Virchows Archiv. B, Cell pathology including molecular pathology.

[4]  V. Duance,et al.  Type III collagen in normal human articular cartilage , 1994, The Histochemical Journal.

[5]  H. Muir,et al.  An experimental model of osteoarthritis; early morphological and biochemical changes. , 1977, The Journal of bone and joint surgery. British volume.

[6]  M Kashiwagi,et al.  TIMP-3 Is a Potent Inhibitor of Aggrecanase 1 (ADAM-TS4) and Aggrecanase 2 (ADAM-TS5)* , 2001, The Journal of Biological Chemistry.

[7]  J. Pelletier,et al.  Immunological analysis of proteoglycan structural changes in the early stage of experimental osteoarthritic canine cartilage lesions , 1992, Journal of orthopaedic research : official publication of the Orthopaedic Research Society.

[8]  D. Heinegård,et al.  Altered patterns and synthesis of extracellular matrix macromolecules in early osteoarthritis. , 2004, Matrix biology : journal of the International Society for Matrix Biology.

[9]  H. Mankin,et al.  Collagenase and collagenase inhibitors in osteoarthritic and normal cartilage. , 1977, The Journal of clinical investigation.

[10]  B. Swoboda Aspekte der epidemiologischen Arthroseforschung , 2001, Der Orthopäde.

[11]  F. Wollheim Serum markers of articular cartilage damage and repair. , 1999, Rheumatic diseases clinics of North America.

[12]  Y. Okada,et al.  Matrix metalloproteinases and tissue inhibitors of metalloproteinases in synovial fluids from patients with rheumatoid arthritis or osteoarthritis , 2000, Annals of the rheumatic diseases.

[13]  S. Tashman,et al.  Spontaneous and experimental osteoarthritis in dog: Similarities and differences in proteoglycan levels , 2003, Journal of orthopaedic research : official publication of the Orthopaedic Research Society.

[14]  E. Vuorio,et al.  Differential expression patterns of matrix metalloproteinases and their inhibitors during development of osteoarthritis in a transgenic mouse model , 2002, Annals of the rheumatic diseases.

[15]  P. Price,et al.  Isolation and Sequence of a Novel Human Chondrocyte Protein Related to Mammalian Members of the Chitinase Protein Family* , 1996, The Journal of Biological Chemistry.

[16]  A. Ratcliffe,et al.  Increased release of matrix components from articular cartilage in experimental canine osteoarthritis , 1992, Journal of orthopaedic research : official publication of the Orthopaedic Research Society.

[17]  Johanne Martel-Pelletier,et al.  Pathophysiology of osteoarthritis. , 1998, Osteoarthritis and cartilage.

[18]  L. McKenna,et al.  An N-terminal peptide from link protein can stimulate biosynthesis of collagen by human articular cartilage. , 2000, Archives of biochemistry and biophysics.

[19]  K. Nishioka,et al.  Presence of pannus-like tissue on osteoarthritic cartilage and its histological character. , 2003, Osteoarthritis and cartilage.

[20]  K. von der Mark,et al.  Type X collagen synthesis in human osteoarthritic cartilage. Indication of chondrocyte hypertrophy. , 1992, Arthritis and rheumatism.

[21]  A. Cole,et al.  Expression of matrix metalloproteinases in normal and damaged articular cartilage from human knee and ankle joints. , 1999, Laboratory investigation; a journal of technical methods and pathology.

[22]  E. Vignon,et al.  Urinary type II collagen C-telopeptide levels are increased in patients with rapidly destructive hip osteoarthritis , 2003, Annals of the rheumatic diseases.

[23]  David Amiel,et al.  Physical properties of rabbit articular cartilage after transection of the anterior cruciate ligament , 1997, Journal of orthopaedic research : official publication of the Orthopaedic Research Society.

[24]  A. Gepstein,et al.  Site specific changes in gene expression and cartilage metabolism during early experimental osteoarthritis. , 2004, Osteoarthritis and cartilage.

[25]  H. Kresse,et al.  The small proteoglycans decorin and biglycan in human articular cartilage of late-stage osteoarthritis. , 2001, Osteoarthritis and cartilage.

[26]  J. Matyas,et al.  The early molecular natural history of experimental osteoarthritis. I. Progressive discoordinate expression of aggrecan and type II procollagen messenger RNA in the articular cartilage of adult animals. , 1999, Arthritis and rheumatism.

[27]  G. Homandberg,et al.  Fibronectin fragments cause chondrolysis of bovine articular cartilage slices in culture. , 1992, The Journal of biological chemistry.

[28]  I. Martin,et al.  Quantitative analysis of gene expression in human articular cartilage from normal and osteoarthritic joints. , 2001, Osteoarthritis and cartilage.

[29]  K. Pritzker,et al.  Analysis of collagens solubilized from cartilage of normal and spontaneously osteoarthritic rhesus monkeys. , 1994, Osteoarthritis and cartilage.

[30]  K. Nawata,et al.  Immunohistochemical collagen analysis of the most superficial layer in adult articular cartilage , 2004, Journal of orthopaedic science : official journal of the Japanese Orthopaedic Association.

[31]  E. Vignon,et al.  Matrix metalloproteinase-1, -3, -13 and aggrecanase-1 and -2 are differentially expressed in experimental osteoarthritis. , 2001, Biochimica et biophysica acta.

[32]  M. Kashiwagi,et al.  Aggrecanases and cartilage matrix degradation , 2003, Arthritis research & therapy.

[33]  L. McKenna,et al.  An N-terminal peptide from link protein stimulates proteoglycan biosynthesis in human articular cartilage in vitro. , 1998, Arthritis and rheumatism.

[34]  A. Zien,et al.  YKL-39 (chitinase 3-like protein 2), but not YKL-40 (chitinase 3-like protein 1), is up regulated in osteoarthritic chondrocytes , 2003, Annals of the rheumatic diseases.

[35]  K. Ostergaard,et al.  The distribution of YKL-40 in osteoarthritic and normal human articular cartilage. , 1999, Scandinavian journal of rheumatology.

[36]  W. Richter,et al.  Enhanced expression of the human chitinase 3-like 2 gene (YKL-39) but not chitinase 3-like 1 gene (YKL-40) in osteoarthritic cartilage. , 2002, Biochemical and biophysical research communications.

[37]  D. Eyre,et al.  Biosynthesis of collagen and other matrix proteins by articular cartilage in experimental osteoarthrosis. , 1980, The Biochemical journal.

[38]  A. Poole,et al.  Increased type II collagen degradation and very early focal cartilage degeneration is associated with upregulation of chondrocyte differentiation related genes in early human articular cartilage lesions. , 2005, The Journal of rheumatology.

[39]  F. Glorieux,et al.  Analysis of the type of collagen present in osteoarthritic human cartilage. , 1982, Clinical orthopaedics and related research.

[40]  I. Otterness,et al.  An analysis of 14 molecular markers for monitoring osteoarthritis. Relationship of the markers to clinical end-points. , 2001, Osteoarthritis and cartilage.

[41]  J. Bijlsma,et al.  Steady progression of osteoarthritic features in the canine groove model. , 2002, Osteoarthritis and cartilage.

[42]  I. Otterness,et al.  Collagenase 1 and collagenase 3 expression in a guinea pig model of osteoarthritis. , 1998, Arthritis and rheumatism.

[43]  A. Cole,et al.  Osteoarthritic lesions: involvement of three different collagenases. , 1997, Arthritis and rheumatism.

[44]  P. Pastoureau,et al.  Evidence of early subchondral bone changes in the meniscectomized guinea pig. A densitometric study using dual-energy X-ray absorptiometry subregional analysis. , 1999, Osteoarthritis and cartilage.

[45]  A. Hollander,et al.  Differences in type II collagen degradation between peripheral and central cartilage of rat stifle joints after cranial cruciate ligament transection. , 2000, Arthritis and rheumatism.

[46]  T. Aigner,et al.  Severe disturbance of the distribution and expression of type VI collagen chains in osteoarthritic articular cartilage. , 1998, Arthritis and rheumatism.

[47]  H. Dorfman,et al.  Biochemical and metabolic abnormalities in articular cartilage from osteo-arthritic human hips. II. Correlation of morphology with biochemical and metabolic data. , 1971, The Journal of bone and joint surgery. American volume.

[48]  B. Swoboda,et al.  Matrilin-3 in human articular cartilage: increased expression in osteoarthritis. , 2002, Osteoarthritis and cartilage.

[49]  J. Matyas,et al.  Discoordinate gene expression of aggrecan and type II collagen in experimental osteoarthritis. , 1995, Arthritis and rheumatism.

[50]  H. Muir,et al.  In vivo and in vitro stimulation of chondrocyte biosynthetic activity in early experimental osteoarthritis. , 1984, Arthritis and rheumatism.

[51]  H. Ma,et al.  Deletion of active ADAMTS5 prevents cartilage degradation in a murine model of osteoarthritis , 2005, Nature.

[52]  J. Matyas,et al.  A comparison of various "housekeeping" probes for northern analysis of normal and osteoarthritic articular cartilage RNA. , 1999, Connective tissue research.

[53]  T. Kawamoto,et al.  Enhancement of cartilage matrix protein synthesis in arthritic cartilage. , 1997, Arthritis and rheumatism.

[54]  K. Brandt,et al.  Osteoarthritic changes in canine articular cartilage, subchondral bone, and synovium fifty-four months after transection of the anterior cruciate ligament. , 2010, Arthritis and rheumatism.

[55]  Thomas Aigner,et al.  Articular cartilage and changes in Arthritis: Cell biology of osteoarthritis , 2001, Arthritis Research & Therapy.

[56]  Brandt Kd,et al.  Hypertrophic repair of canine articular cartilage in osteoarthritis after anterior cruciate ligament transection. , 1991 .

[57]  B. Swoboda,et al.  Osteopontin is expressed by adult human osteoarthritic chondrocytes: protein and mRNA analysis of normal and osteoarthritic cartilage. , 2000, Matrix biology : journal of the International Society for Matrix Biology.

[58]  R. Ganz,et al.  Early osteoarthritic changes of human femoral head cartilage subsequent to femoro-acetabular impingement. , 2003, Osteoarthritis and cartilage.

[59]  R. Appleyard,et al.  Topographical analysis of the structural, biochemical and dynamic biomechanical properties of cartilage in an ovine model of osteoarthritis. , 2003, Osteoarthritis and cartilage.

[60]  E. Vignon,et al.  Differential gene expression analysis in a rabbit model of osteoarthritis induced by anterior cruciate ligament (ACL) section. , 2002, Biorheology.

[61]  E. Scheller,et al.  Presence and distribution of collagen II, collagen I, fibronectin, and tenascin in rabbit normal and osteoarthritic cartilage. , 1999, The Journal of rheumatology.

[62]  C. Newton,et al.  Antibodies to canine collagen types I and II in dogs with spontaneous cruciate ligament rupture and osteoarthritis. , 1987, Arthritis and rheumatism.

[63]  A Zien,et al.  Anabolic and catabolic gene expression pattern analysis in normal versus osteoarthritic cartilage using complementary DNA-array technology. , 2001, Arthritis and rheumatism.

[64]  K. Brandt,et al.  Anterior (cranial) cruciate ligament transection in the dog: a bona fide model of osteoarthritis, not merely of cartilage injury and repair. , 1991, The Journal of rheumatology.

[65]  D. Salter,et al.  Tenascin is increased in cartilage and synovium from arthritic knees. , 1993, British journal of rheumatology.

[66]  R. Kirkpatrick,et al.  Human cartilage glycoprotein 39 (HC gp-39) mRNA expression in adult and fetal chondrocytes, osteoblasts and osteocytes by in-situ hybridization. , 2000, Osteoarthritis and cartilage.

[67]  A. Poole,et al.  Studies of the articular cartilage proteoglycan aggrecan in health and osteoarthritis. Evidence for molecular heterogeneity and extensive molecular changes in disease. , 1992, The Journal of clinical investigation.

[68]  A. Ratcliffe,et al.  Changes in proteoglycan turnover in experimental canine osteoarthritic cartilage. , 1992, Matrix.

[69]  W. Richter,et al.  Increased Urinary Concentration of Collagen Type II C-Telopeptide Fragments in Patients with Osteoarthritis , 2004, Pathobiology.

[70]  T. Aigner,et al.  Molecular pathology and pathobiology of osteoarthritic cartilage , 2002, Cellular and Molecular Life Sciences CMLS.

[71]  Mirela Ionescu,et al.  The pathobiology of focal lesion development in aging human articular cartilage and molecular matrix changes characteristic of osteoarthritis. , 2003, Arthritis and rheumatism.

[72]  W. Puhl,et al.  Gene Expression of Stromelysin and Aggrecan in Osteoarthritic Cartilage , 2002, Pathobiology.

[73]  D. Eyre,et al.  Analysis of cartilage biomarkers in the early phases of canine experimental osteoarthritis. , 2004, Arthritis and rheumatism.

[74]  C. Little,et al.  Topographic variation in biglycan and decorin synthesis by articular cartilage in the early stages of osteoarthritis: An experimental study in sheep , 1996, Journal of orthopaedic research : official publication of the Orthopaedic Research Society.

[75]  J. Martel-Pelletier,et al.  Imbalance between the mechanisms of activation and inhibition of metalloproteases in the early lesions of experimental osteoarthritis. , 1990, Arthritis and rheumatism.

[76]  P. Agarwal,et al.  Identification and initial characterization of 5000 expressed sequenced tags (ESTs) each from adult human normal and osteoarthritic cartilage cDNA libraries. , 2001, Osteoarthritis and cartilage.

[77]  H. Muir,et al.  Demonstration of increased proteoglycan turnover in cartilage explants from dogs with experimental osteoarthritis , 1984, Journal of orthopaedic research : official publication of the Orthopaedic Research Society.

[78]  P. Roughley,et al.  Regional assessment of articular cartilage gene expression and small proteoglycan metabolism in an animal model of osteoarthritis , 2005, Arthritis research & therapy.

[79]  M. E. Adams Cartilage hypertrophy following canine anterior cruciate ligament transection differs among different areas of the joint. , 1989, The Journal of rheumatology.

[80]  N. Boos,et al.  Immunohistochemical analysis of type X‐collagen expression in osteoarthritis of the hip joint , 1999, Journal of orthopaedic research : official publication of the Orthopaedic Research Society.

[81]  T. Aigner,et al.  Suppression of cartilage matrix gene expression in upper zone chondrocytes of osteoarthritic cartilage. , 1997, Arthritis and rheumatism.

[82]  G. Nuki,et al.  Experimentally-induced osteoarthritis in the dog. , 1973, Annals of the rheumatic diseases.

[83]  D. Hart,et al.  Comparison of Northern blot hybridization and a reverse transcriptase-polymerase chain reaction technique for measurement of mRNA expression of metalloproteinases and matrix components in articular cartilage and synovial membrane from horses with osteoarthritis. , 2000, American journal of veterinary research.

[84]  T. Lincoln,et al.  Cyclic GMP-dependent protein kinase is required for thrombospondin and tenascin mediated focal adhesion disassembly. , 1996, Journal of cell science.

[85]  B. Swoboda,et al.  Tenascin and aggrecan expression by articular chondrocytes is influenced by interleukin 1β: a possible explanation for the changes in matrix synthesis during osteoarthritis , 2004, Annals of the rheumatic diseases.

[86]  W. Horton,et al.  Intrajoint comparisons of gene expression patterns in human osteoarthritis suggest a change in chondrocyte phenotype , 2005, Journal of orthopaedic research : official publication of the Orthopaedic Research Society.

[87]  W. Richter,et al.  Early and stable upregulation of collagen type II, collagen type I and YKL40 expression levels in cartilage during early experimental osteoarthritis occurs independent of joint location and histological grading , 2004, Arthritis research & therapy.

[88]  J. Bijlsma,et al.  The canine 'groove' model, compared with the ACLT model of osteoarthritis. , 2002, Osteoarthritis and cartilage.

[89]  J. Pelletier,et al.  Role of synovial membrane inflammation in cartilage matrix breakdown in the Pond-Nuki dog model of osteoarthritis. , 1985, Arthritis and rheumatism.

[90]  J. Raynauld,et al.  Collagenase-1 and collagenase-3 synthesis in normal and early experimental osteoarthritic canine cartilage: an immunohistochemical study. , 1998, The Journal of rheumatology.

[91]  J. Matyas,et al.  Expression of biglycan, decorin and fibromodulin in the hypertrophic phase of experimental osteoarthritis. , 1996, Osteoarthritis and cartilage.

[92]  D Heinegård,et al.  Up-regulation of cartilage oligomeric matrix protein at the onset of articular cartilage degeneration in a transgenic mouse model of osteoarthritis. , 2000, Arthritis and rheumatism.

[93]  H. V. van Bree,et al.  Prevalence and relevance of antibodies to type-I and -II collagen in synovial fluid of dogs with cranial cruciate ligament damage. , 2000, American journal of veterinary research.

[94]  Brian,et al.  Human cartilage gp-39, a major secretory product of articular chondrocytes and synovial cells, is a mammalian member of a chitinase protein family. , 1993, The Journal of biological chemistry.

[95]  B. Swoboda [Epidemiological arthrosis research]. , 2001, Der Orthopade.

[96]  P. Roughley,et al.  Changes in messenger RNA and protein levels of proteoglycans and link protein in human osteoarthritic cartilage samples. , 1997, Arthritis and rheumatism.

[97]  A. Nerlich,et al.  Immunohistochemical analysis of interstitial collagens in cartilage of different stages of osteoarthrosis , 1993, Virchows Archiv. B, Cell pathology including molecular pathology.

[98]  H. Iwata,et al.  Effect of high-molecular-weight sodium hyaluronate on immobilized rabbit knee. , 1994, Clinical orthopaedics and related research.

[99]  S. Breusch,et al.  Ultrastructural findings after intraarticular application of hyaluronan in a canine model of arthropathy , 2000, Journal of orthopaedic research : official publication of the Orthopaedic Research Society.

[100]  E. Vignon,et al.  Cross sectional evaluation of biochemical markers of bone, cartilage, and synovial tissue metabolism in patients with knee osteoarthritis: relations with disease activity and joint damage , 2001, Annals of the rheumatic diseases.

[101]  B. Swoboda,et al.  Expression of type VI collagen in normal and osteoarthritic human cartilage. , 1999, Osteoarthritis and cartilage.

[102]  R. Mason,et al.  Metalloproteinase and tissue inhibitor of metalloproteinase expression in the murine STR/ort model of osteoarthritis. , 2002, Osteoarthritis and cartilage.

[103]  L. Duong,et al.  Expression of the cartilage derived anti-angiogenic factor chondromodulin-I decreases in the early stage of experimental osteoarthritis. , 2003, The Journal of rheumatology.

[104]  R. Herken,et al.  Expression of collagen type I and type II in consecutive stages of human osteoarthritis , 2004, Histochemistry and Cell Biology.

[105]  K. Ostergaard,et al.  Topographic and zonal distribution of tenascin in human articular cartilage from femoral heads: normal versus mild and severe osteoarthritis. , 2003, Osteoarthritis and cartilage.

[106]  R. Mason,et al.  Elevated aggrecan mRNA in early murine osteoarthritis. , 1997, Osteoarthritis and cartilage.

[107]  L. Zardi,et al.  Tenascin distribution in articular cartilage from normal subjects and from patients with osteoarthritis and rheumatoid arthritis. , 1994, Arthritis and rheumatism.

[108]  H. Mankin,et al.  Collagen synthesis in normal and osteoarthritic human cartilage. , 1977, The Journal of clinical investigation.

[109]  G. Ville,et al.  Histological cartilage changes in a rabbit model of osteoarthritis. , 1987, The Journal of rheumatology.

[110]  J. Matyas,et al.  Expression of proteoglycans and collagen in the hypertrophic phase of experimental osteoarthritis. , 1995, The Journal of rheumatology. Supplement.

[111]  T. Aigner,et al.  Type X collagen expression in osteoarthritic and rheumatoid articular cartilage , 1993, Virchows Archiv. B, Cell pathology including molecular pathology.

[112]  M. Chung,et al.  Regional quantification of cartilage type II collagen and aggrecan messenger RNA in joints with early experimental osteoarthritis. , 2002, Arthritis and rheumatism.

[113]  H. Hämmerle,et al.  The Effects of Collagen Fragments on the Extracellular Matrix Metabolism of Bovine and Human Chondrocytes , 2001, Connective tissue research.

[114]  M. Glimcher,et al.  Induction of osteoarthrosis in the rabbit knee joint: biochemical studies on the articular cartilage. , 1980, Clinical orthopaedics and related research.

[115]  K. Brandt,et al.  MRI demonstration of hypertrophic articular cartilage repair in osteoarthritis , 2004, Skeletal Radiology.

[116]  F. Quondamatteo,et al.  Light and electron microscopic in-situ hybridization of collagen type I and type II mRNA in the fibrocartilaginous tissue of late-stage osteoarthritis. , 1998, Osteoarthritis and cartilage.

[117]  L. Brunnberg,et al.  Biomarkers of joint tissue metabolism in canine osteoarthritic and arthritic joint disorders. , 2002, Osteoarthritis and cartilage.

[118]  D. Zukor,et al.  Sites of collagenase cleavage and denaturation of type II collagen in aging and osteoarthritic articular cartilage and their relationship to the distribution of matrix metalloproteinase 1 and matrix metalloproteinase 13. , 2002, Arthritis and rheumatism.

[119]  H. Ma,et al.  Characterization of and osteoarthritis susceptibility in ADAMTS-4-knockout mice. , 2004, Arthritis and rheumatism.

[120]  T. Aigner,et al.  Bone Morphogenetic Protein‐Mediating Receptor‐Associated Smads as well as Common Smad Are Expressed in Human Articular Chondrocytes but not Up‐Regulated or Down‐Regulated in Osteoarthritic Cartilage , 2002, Journal of bone and mineral research : the official journal of the American Society for Bone and Mineral Research.