Molecular basis for specificity of nuclear import and prediction of nuclear localization.

[1]  U. Vinkemeier,et al.  Molecular basis for the recognition of phosphorylated STAT1 by importin alpha5. , 2010, Journal of molecular biology.

[2]  G. Cingolani,et al.  Conformational selection in the recognition of the snurportin importin beta binding domain by importin beta. , 2010, Biochemistry.

[3]  B. Kobe,et al.  Probing the Specificity of Binding to the Major Nuclear Localization Sequence-binding Site of Importin-α Using Oriented Peptide Library Screening* , 2010, The Journal of Biological Chemistry.

[4]  M. Stewart,et al.  Novel Binding of the Mitotic Regulator TPX2 (Target Protein for Xenopus Kinesin-like Protein 2) to Importin-α* , 2010, The Journal of Biological Chemistry.

[5]  Ryan E. Mills,et al.  Expanding the Definition of the Classical Bipartite Nuclear Localization Signal , 2010, Traffic.

[6]  J. Ebert,et al.  Nuclear import mechanism of the EJC component Mago-Y14 revealed by structural studies of importin 13. , 2010, Molecular cell.

[7]  Baris E. Suzek,et al.  The Universal Protein Resource (UniProt) in 2010 , 2009, Nucleic Acids Res..

[8]  D. Jans,et al.  Importins and Beyond: Non‐Conventional Nuclear Transport Mechanisms , 2009, Traffic.

[9]  Alan M. Moses,et al.  NLStradamus: a simple Hidden Markov Model for nuclear localization signal prediction , 2009, BMC Bioinformatics.

[10]  M. Tomita,et al.  Systematic identification of cell cycle-dependent yeast nucleocytoplasmic shuttling proteins by prediction of composite motifs , 2009, Proceedings of the National Academy of Sciences.

[11]  R. Sun,et al.  mRNA Display Design of Fibronectin-based Intrabodies That Detect and Inhibit Severe Acute Respiratory Syndrome Coronavirus Nucleocapsid Protein* , 2009, Journal of Biological Chemistry.

[12]  D. Goldfarb,et al.  Evolution of the Metazoan-Specific Importin α Gene Family , 2009, Journal of Molecular Evolution.

[13]  M. Tomita,et al.  Six Classes of Nuclear Localization Signals Specific to Different Binding Grooves of Importin α* , 2009, Journal of Biological Chemistry.

[14]  M. Tomita,et al.  Nuclear Export Signal Consensus Sequences Defined Using a Localization‐Based Yeast Selection System , 2008, Traffic.

[15]  Gautier Robin,et al.  Kap95p binding induces the switch loops of RanGDP to adopt the GTP-bound conformation: implications for nuclear import complex assembly dynamics. , 2008, Journal of molecular biology.

[16]  M. Tomita,et al.  Design of peptide inhibitors for the importin alpha/beta nuclear import pathway by activity-based profiling. , 2008, Chemistry & biology.

[17]  Y. Chook,et al.  Modular Organization and Combinatorial Energetics of Proline–Tyrosine Nuclear Localization Signals , 2008, PLoS biology.

[18]  Bostjan Kobe,et al.  Predikin and PredikinDB: a computational framework for the prediction of protein kinase peptide specificity and an associated database of phosphorylation sites , 2008, BMC Bioinformatics.

[19]  Ryan E. Mills,et al.  A PY-NLS Nuclear Targeting Signal Is Required for Nuclear Localization and Function of the Saccharomyces cerevisiae mRNA-binding Protein Hrp1* , 2008, Journal of Biological Chemistry.

[20]  I. Mills,et al.  Structural basis for the nuclear import of the human androgen receptor , 2008, Journal of Cell Science.

[21]  G. Cingolani,et al.  Molecular Basis for the Recognition of Snurportin 1 by Importin β* , 2008, Journal of Biological Chemistry.

[22]  Chikatoshi Kai,et al.  Towards defining the nuclear proteome , 2008, Genome Biology.

[23]  R. Ficner,et al.  Structural basis for RanGTP independent entry of spliceosomal U snRNPs into the nucleus. , 2007, Journal of molecular biology.

[24]  A. Califano,et al.  Dialogue on Reverse‐Engineering Assessment and Methods , 2007, Annals of the New York Academy of Sciences.

[25]  John D. Aitchison,et al.  Cell biology: Pore puzzle , 2007, Nature.

[26]  B. Chait,et al.  The molecular architecture of the nuclear pore complex , 2007, Nature.

[27]  Reid C. Johnson,et al.  The High Mobility Group Box Transcription Factor Nhp6Ap Enters the Nucleus by a Calmodulin-dependent, Ran-independent Pathway* , 2007, Journal of Biological Chemistry.

[28]  N. Imamoto,et al.  Structural basis for substrate recognition and dissociation by human transportin 1. , 2007, Molecular cell.

[29]  Elena Conti,et al.  Structural biology of nucleocytoplasmic transport. , 2007, Annual review of biochemistry.

[30]  G. Moseley,et al.  A Microtubule‐Facilitated Nuclear Import Pathway for Cancer Regulatory Proteins , 2007, Traffic.

[31]  Paul Horton,et al.  Nucleic Acids Research Advance Access published May 21, 2007 WoLF PSORT: protein localization predictor , 2007 .

[32]  Y. Chook,et al.  Structure-based design of a pathway-specific nuclear import inhibitor , 2007, Nature Structural &Molecular Biology.

[33]  Markus Brameier,et al.  BIOINFORMATICS APPLICATIONS NOTE doi:10.1093/bioinformatics/btm066 Sequence analysis NucPred—Predicting nuclear localization of proteins , 2007 .

[34]  N. Daigle,et al.  Structure and nuclear import function of the C-terminal domain of influenza virus polymerase PB2 subunit , 2007, Nature Structural &Molecular Biology.

[35]  John Hawkins,et al.  Predicting nuclear localization. , 2007, Journal of proteome research.

[36]  Ryan E. Mills,et al.  Classical Nuclear Localization Signals: Definition, Function, and Interaction with Importin α* , 2007, Journal of Biological Chemistry.

[37]  Josefine Sprenger,et al.  Evaluation and comparison of mammalian subcellular localization prediction methods , 2006, BMC Bioinformatics.

[38]  J. McGrath,et al.  Evidence for Actin Cytoskeleton-dependent and -independent Pathways for RelA/p65 Nuclear Translocation in Endothelial Cells* , 2006, Journal of Biological Chemistry.

[39]  Haruki Nakamura,et al.  The worldwide Protein Data Bank (wwPDB): ensuring a single, uniform archive of PDB data , 2006, Nucleic Acids Res..

[40]  M. Hodel,et al.  Nuclear Localization Signal Receptor Affinity Correlates with in Vivo Localization in Saccharomyces cerevisiae* , 2006, Journal of Biological Chemistry.

[41]  Jenn-Kang Hwang,et al.  Prediction of protein subcellular localization , 2006, Proteins.

[42]  Y. Chook,et al.  Rules for Nuclear Localization Sequence Recognition by Karyopherinβ2 , 2006, Cell.

[43]  Jun Kawai,et al.  LOCATE: a mouse protein subcellular localization database , 2005, Nucleic Acids Res..

[44]  M. Stewart,et al.  Nup50/Npap60 function in nuclear protein import complex disassembly and importin recycling , 2005, The EMBO journal.

[45]  Achim Dickmanns,et al.  Structural basis for m3G‐cap‐mediated nuclear import of spliceosomal UsnRNPs by snurportin1 , 2005, The EMBO journal.

[46]  Itay Mayrose,et al.  ConSurf 2005: the projection of evolutionary conservation scores of residues on protein structures , 2005, Nucleic Acids Res..

[47]  Arun Krishnan,et al.  pSLIP: SVM based protein subcellular localization prediction using multiple physicochemical properties , 2005, BMC Bioinformatics.

[48]  R. Russell,et al.  Linear motifs: Evolutionary interaction switches , 2005, FEBS letters.

[49]  M. Stewart,et al.  Structural basis for the high-affinity binding of nucleoporin Nup1p to the Saccharomyces cerevisiae importin-beta homologue, Kap95p. , 2005, Journal of molecular biology.

[50]  Yoshiyuki Matsuura,et al.  Structural basis for nuclear import complex dissociation by RanGTP , 2005, Nature.

[51]  T. Misteli Faculty Opinions recommendation of A systems analysis of importin-{alpha}-{beta} mediated nuclear protein import. , 2005 .

[52]  G. Riddick,et al.  A systems analysis of importin-α–β mediated nuclear protein import , 2005, The Journal of cell biology.

[53]  G. Cingolani,et al.  Phospholipid Scramblase 1 Contains a Nonclassical Nuclear Localization Signal with Unique Binding Site in Importin α* , 2005, Journal of Biological Chemistry.

[54]  Ulrike Kutay,et al.  Leucine-rich nuclear-export signals: born to be weak. , 2005, Trends in cell biology.

[55]  L. Pemberton,et al.  Karyopherins: from nuclear-transport mediators to nuclear-function regulators. , 2004, Trends in cell biology.

[56]  D. Goldfarb,et al.  Importin α: A multipurpose nuclear-transport receptor , 2004 .

[57]  Zhiyong Lu,et al.  Proteome Analyst: custom predictions with explanations in a web-based tool for high-throughput proteome annotations , 2004, Nucleic Acids Res..

[58]  Gajendra P. S. Raghava,et al.  ESLpred: SVM-based method for subcellular localization of eukaryotic proteins using dipeptide composition and PSI-BLAST , 2004, Nucleic Acids Res..

[59]  E. Yamashita,et al.  The Structure of Importin-ß Bound to SREBP-2: Nuclear Import of a Transcription Factor , 2003, Science.

[60]  E. O’Shea,et al.  Global analysis of protein localization in budding yeast , 2003, Nature.

[61]  A. Corbett,et al.  Structural basis for Nup2p function in cargo release and karyopherin recycling in nuclear import , 2003, The EMBO journal.

[62]  B. Kobe,et al.  Role of flanking sequences and phosphorylation in the recognition of the simian-virus-40 large T-antigen nuclear localization sequences by importin-alpha. , 2003, The Biochemical journal.

[63]  Bostjan Kobe,et al.  Structural Basis for the Specificity of Bipartite Nuclear Localization Sequence Binding by Importin-α* , 2003, Journal of Biological Chemistry.

[64]  L. Kinnunen,et al.  Importin α Nuclear Localization Signal Binding Sites for STAT1, STAT2, and Influenza A Virus Nucleoprotein* , 2003, Journal of Biological Chemistry.

[65]  J. Forwood,et al.  Defective importin β recognition and nuclear import of the sex-determining factor SRY are associated with XY sex-reversing mutations , 2003, Proceedings of the National Academy of Sciences of the United States of America.

[66]  M. Hodel,et al.  The Auto-inhibitory Function of Importin α Is Essentialin Vivo * , 2003, The Journal of Biological Chemistry.

[67]  T. Littlewood,et al.  GLFG and FxFG Nucleoporins Bind to Overlapping Sites on Importin-β* , 2002, The Journal of Biological Chemistry.

[68]  B. Kobe,et al.  Structural basis and prediction of substrate specificity in protein serine/threonine kinases , 2002, Proceedings of the National Academy of Sciences of the United States of America.

[69]  G. Cingolani,et al.  Molecular basis for the recognition of a nonclassical nuclear localization signal by importin beta. , 2002, Molecular cell.

[70]  E. Hartmann,et al.  Differential Expression of Classical Nuclear Transport Factors During Cellular Proliferation and Differentiation , 2002, Cellular Physiology and Biochemistry.

[71]  L. Kinnunen,et al.  Arginine/Lysine-rich Nuclear Localization Signals Mediate Interactions between Dimeric STATs and Importin α5* , 2002, The Journal of Biological Chemistry.

[72]  J. Forwood,et al.  Nuclear Import Pathway of the Telomere Elongation Supressor TRF1: Inhibition by Importin α , 2002 .

[73]  B. Mykytka,et al.  Accelerating the Rate of Disassembly of Karyopherin·Cargo Complexes* , 2002, The Journal of Biological Chemistry.

[74]  A. Faussat,et al.  Karyopherin alpha2: a control step of glucose-sensitive gene expression in hepatic cells. , 2002, The Biochemical journal.

[75]  T. Wolff,et al.  Characterization of an Unusual Importin α Binding Motif in the Borna Disease Virus p10 Protein That Directs Nuclear Import* , 2002, The Journal of Biological Chemistry.

[76]  Kevin M. McBride,et al.  Regulated nuclear import of the STAT1 transcription factor by direct binding of importin‐α , 2002, The EMBO journal.

[77]  I. Lödige,et al.  Constitutive and IFN‐γ‐induced nuclear import of STAT1 proceed through independent pathways , 2002 .

[78]  J. Forwood,et al.  The C-terminal Nuclear Localization Signal of the Sex-determining Region Y (SRY) High Mobility Group Domain Mediates Nuclear Import through Importin β1* , 2001, The Journal of Biological Chemistry.

[79]  E. Hartmann,et al.  Adenoviral E1A protein nuclear import is preferentially mediated by importin alpha3 in vitro. , 2001, Virology.

[80]  Bostjan Kobe,et al.  Biophysical Characterization of Interactions Involving Importin-α during Nuclear Import* , 2001, The Journal of Biological Chemistry.

[81]  Zhirong Sun,et al.  Support vector machine approach for protein subcellular localization prediction , 2001, Bioinform..

[82]  Karsten Weis,et al.  Importin-beta-like nuclear transport receptors , 2001, Genome Biology.

[83]  J. Forwood,et al.  Nuclear Import of Creb and AP-1 Transcription Factors Requires Importin-β1 and Ran but is Independent of Importin-α , 2001 .

[84]  C. Heldin,et al.  Transforming growth factor-beta induces nuclear import of Smad3 in an importin-beta1 and Ran-dependent manner. , 2001, Molecular biology of the cell.

[85]  X. Deng,et al.  Molecular Cloning of a Novel Importin α Homologue from Rice, by Which Constitutive Photomorphogenic 1 (COP1) Nuclear Localization Signal (NLS)-Protein Is Preferentially Nuclear Imported* , 2001, The Journal of Biological Chemistry.

[86]  M. Hodel,et al.  Dissection of a Nuclear Localization Signal* , 2001, The Journal of Biological Chemistry.

[87]  B. Rost,et al.  Finding nuclear localization signals , 2000, EMBO reports.

[88]  C. Christophe-Hobertus,et al.  Nuclear targeting of proteins: how many different signals? , 2000, Cellular signalling.

[89]  B. Kobe,et al.  Structural basis of recognition of monopartite and bipartite nuclear localization sequences by mammalian importin-alpha. , 2000, Journal of molecular biology.

[90]  J Kuriyan,et al.  Crystallographic analysis of the specific yet versatile recognition of distinct nuclear localization signals by karyopherin alpha. , 2000, Structure.

[91]  F. Bischoff,et al.  Evidence for Distinct Substrate Specificities of Importin α Family Members in Nuclear Protein Import , 1999, Molecular and Cellular Biology.

[92]  N. Imamoto,et al.  Nuclear import of sterol regulatory element-binding protein-2, a basic helix-loop-helix-leucine zipper (bHLH-Zip)-containing transcription factor, occurs through the direct interaction of importin beta with HLH-Zip. , 1999, Molecular biology of the cell.

[93]  Alfred Wittinghofer,et al.  Structural View of the Ran–Importin β Interaction at 2.3 Å Resolution , 1999, Cell.

[94]  Wei Hu,et al.  Efficiency of Importin α/β-Mediated Nuclear Localization Sequence Recognition and Nuclear Import , 1999, The Journal of Biological Chemistry.

[95]  G. Blobel,et al.  Structure of the nuclear transport complex karyopherin-β2–Ran˙GppNHp , 1999, Nature.

[96]  R. Stevens,et al.  Structural basis of autoregulation of phenylalanine hydroxylase , 1999, Nature Structural Biology.

[97]  B. Kobe Autoinhibition by an internal nuclear localization signal revealed by the crystal structure of mammalian importin α , 1999, Nature Structural Biology.

[98]  T. Martin,et al.  Importin β Recognizes Parathyroid Hormone-related Protein with High Affinity and Mediates Its Nuclear Import in the Absence of Importin α* , 1999, The Journal of Biological Chemistry.

[99]  Bryan R. Cullen,et al.  The Arginine-Rich Domains Present in Human Immunodeficiency Virus Type 1 Tat and Rev Function as Direct Importin β-Dependent Nuclear Localization Signals , 1999, Molecular and Cellular Biology.

[100]  M. Malim,et al.  Importin β Can Mediate the Nuclear Import of an Arginine-Rich Nuclear Localization Signal in the Absence of Importin α , 1999, Molecular and Cellular Biology.

[101]  R. Truant,et al.  Nuclear Import of Cdk/Cyclin Complexes: Identification of Distinct Mechanisms for Import of Cdk2/Cyclin E and Cdc2/Cyclin B1 , 1999, The Journal of cell biology.

[102]  Stefan Jaekel,et al.  Importin β, transportin, RanBP5 and RanBP7 mediate nuclear import of ribosomal proteins in mammalian cells , 1998, The EMBO journal.

[103]  G. Blobel,et al.  Crystallographic Analysis of the Recognition of a Nuclear Localization Signal by the Nuclear Import Factor Karyopherin α , 1998, Cell.

[104]  J. Goldstein,et al.  Cleavage of Sterol Regulatory Element-binding Proteins (SREBPs) at Site-1 Requires Interaction with SREBP Cleavage-activating Protein , 1998, The Journal of Biological Chemistry.

[105]  D. Goldfarb,et al.  Evolutionary specialization of the nuclear targeting apparatus. , 1997, Proceedings of the National Academy of Sciences of the United States of America.

[106]  E. Hartmann,et al.  Cloning of two novel human importin‐α subunits and analysis of the expression pattern of the importin‐α protein family , 1997 .

[107]  N. Imamoto,et al.  Differential Modes of Nuclear Localization Signal (NLS) Recognition by Three Distinct Classes of NLS Receptors* , 1997, The Journal of Biological Chemistry.

[108]  T. Takumi,et al.  Identification of novel homologues of mouse importin α, the α subunit of the nuclear pore‐targeting complex, and their tissue‐specific expression , 1997 .

[109]  D. Jans,et al.  Kinetic Characterization of the Human Retinoblastoma Protein Bipartite Nuclear Localization Sequence (NLS) in Vivo andin Vitro , 1997, The Journal of Biological Chemistry.

[110]  C. Xiao,et al.  The Protein Kinase CK2 Site (Ser111/112) Enhances Recognition of the Simian Virus 40 Large T-antigen Nuclear Localization Sequence by Importin* , 1997, The Journal of Biological Chemistry.

[111]  S. Nadler,et al.  Differential Expression and Sequence-specific Interaction of Karyopherin α with Nuclear Localization Sequences* , 1997, The Journal of Biological Chemistry.

[112]  J. Hanover,et al.  Calmodulin activates nuclear protein import: a link between signal transduction and nuclear transport. , 1996, Proceedings of the National Academy of Sciences of the United States of America.

[113]  R. Kraft,et al.  Importin Provides a Link between Nuclear Protein Import and U snRNA Export , 1996, Cell.

[114]  F. Bischoff,et al.  Identification of different roles for RanGDP and RanGTP in nuclear protein import. , 1996, The EMBO journal.

[115]  G. Blobel,et al.  Nuclear protein import: Ran-GTP dissociates the karyopherin alphabeta heterodimer by displacing alpha from an overlapping binding site on beta. , 1996, Proceedings of the National Academy of Sciences of the United States of America.

[116]  E. Hartmann,et al.  A 41 amino acid motif in importin‐alpha confers binding to importin‐beta and hence transit into the nucleus. , 1996, The EMBO journal.

[117]  A. Lamond,et al.  The conserved amino‐terminal domain of hSRP1 alpha is essential for nuclear protein import. , 1996, The EMBO journal.

[118]  G. Blobel,et al.  Protein import into nuclei: association and dissociation reactions involving transport substrate, transport factors, and nucleoporins , 1995, Cell.

[119]  G. Blobel,et al.  Identification of a protein complex that is required for nuclear protein import and mediates docking of import substrate to distinct nucleoporins. , 1995, Proceedings of the National Academy of Sciences of the United States of America.

[120]  E. Hartmann,et al.  Isolation of a protein that is essential for the first step of nuclear protein import , 1994, Cell.

[121]  J. Thompson,et al.  CLUSTAL W: improving the sensitivity of progressive multiple sequence alignment through sequence weighting, position-specific gap penalties and weight matrix choice. , 1994, Nucleic acids research.

[122]  M. Nomura,et al.  Yeast Srp1p has homology to armadillo/plakoglobin/beta-catenin and participates in apparently multiple nuclear functions including the maintenance of the nucleolar structure. , 1994, Proceedings of the National Academy of Sciences of the United States of America.

[123]  S. Adam,et al.  Identification of cytosolic factors required for nuclear location sequence-mediated binding to the nuclear envelope , 1994, The Journal of cell biology.

[124]  F. Bischoff,et al.  RanGAP1 induces GTPase activity of nuclear Ras-related Ran. , 1994, Proceedings of the National Academy of Sciences of the United States of America.

[125]  M. Nomura,et al.  Cloning and characterization of SRP1, a suppressor of temperature-sensitive RNA polymerase I mutations, in Saccharomyces cerevisiae , 1992, Molecular and cellular biology.

[126]  G. Powell,et al.  Localization of parathyroid hormone‐related protein mrna expression in breast cancer and metastatic lesions by in situ hybridization , 1992, Journal of bone and mineral research : the official journal of the American Society for Bone and Mineral Research.

[127]  F. Bischoff,et al.  Catalysis of guanine nucleotide exchange on Ran by the mitotic regulator RCC1 , 1991, Nature.

[128]  R. Peters,et al.  The rate of nuclear cytoplasmic protein transport is determined by the casein kinase II site flanking the nuclear localization sequence of the SV40 T‐antigen. , 1991, The EMBO journal.

[129]  R. Laskey,et al.  Two interdependent basic domains in nucleoplasmin nuclear targeting sequence: Identification of a class of bipartite nuclear targeting sequence , 1991, Cell.

[130]  D. Chelsky,et al.  Sequence requirements for synthetic peptide-mediated translocation to the nucleus , 1989, Molecular and cellular biology.

[131]  W. Richardson,et al.  The nucleoplasmin nuclear location sequence is larger and more complex than that of SV-40 large T antigen , 1988, The Journal of cell biology.

[132]  A E Smith,et al.  Extensive mutagenesis of the nuclear location signal of simian virus 40 large-T antigen , 1986, Molecular and cellular biology.

[133]  William D. Richardson,et al.  A short amino acid sequence able to specify nuclear location , 1984, Cell.

[134]  W. Richardson,et al.  Sequence requirements for nuclear location of simian virus 40 large-T antigen , 1984, Nature.

[135]  María Martín,et al.  The Universal Protein Resource (UniProt) in 2010 , 2010 .

[136]  Hisato Kondoh,et al.  Triggering neural differentiation of ES cells by subtype switching of importin-α , 2007, Nature Cell Biology.

[137]  Yuh Min Chook,et al.  Rules for nuclear localization sequence recognition by karyopherin beta 2. , 2006, Cell.

[138]  D. Goldfarb,et al.  Importin alpha: a multipurpose nuclear-transport receptor. , 2004, Trends in cell biology.

[139]  Graham Dellaire,et al.  The Nuclear Protein Database (NPD): sub-nuclear localisation and functional annotation of the nuclear proteome , 2003, Nucleic Acids Res..

[140]  Søren Brunak,et al.  NESbase version 1.0: a database of nuclear export signals , 2003, Nucleic Acids Res..

[141]  Burkhard Rost,et al.  NLSdb: database of nuclear localization signals , 2003, Nucleic Acids Res..

[142]  J. Forwood,et al.  Nuclear import pathway of the telomere elongation suppressor TRF1: inhibition by importin alpha. , 2002, Biochemistry.

[143]  U. Vinkemeier,et al.  Constitutive and IFN-gamma-induced nuclear import of STAT1 proceed through independent pathways. , 2002, The EMBO journal.

[144]  J. Forwood,et al.  Nuclear import of Creb and AP-1 transcription factors requires importin-beta 1 and Ran but is independent of importin-alpha. , 2001, Biochemistry.

[145]  E. Nice,et al.  Biophysical characterization of interactions involving importin-alpha during nuclear import. , 2001, The Journal of biological chemistry.

[146]  C. Müller,et al.  Structure of importin-beta bound to the IBB domain of importin-alpha. , 1999, Nature.

[147]  W. Hu,et al.  Efficiency of importin alpha/beta-mediated nuclear localization sequence recognition and nuclear import. Differential role of NTF2. , 1999, The Journal of biological chemistry.

[148]  U. Kutay,et al.  Transport between the cell nucleus and the cytoplasm. , 1999, Annual review of cell and developmental biology.

[149]  I R Vetter,et al.  Structural view of the Ran-Importin beta interaction at 2.3 A resolution. , 1999, Cell.

[150]  G. Blobel,et al.  Structure of the nuclear transport complex karyopherin-beta2-Ran x GppNHp. , 1999, Nature.

[151]  K. Nakai,et al.  PSORT: a program for detecting sorting signals in proteins and predicting their subcellular localization. , 1999, Trends in biochemical sciences.

[152]  T. Takumi,et al.  Identification of novel homologues of mouse importin alpha, the alpha subunit of the nuclear pore-targeting complex, and their tissue-specific expression. , 1997, FEBS letters.

[153]  E. Hartmann,et al.  Cloning of two novel human importin-alpha subunits and analysis of the expression pattern of the importin-alpha protein family. , 1997, FEBS letters.

[154]  R. Laskey,et al.  Nuclear targeting sequences--a consensus? , 1991, Trends in biochemical sciences.

[155]  E. Wieschaus,et al.  Molecular analysis of the armadillo locus: uniformly distributed transcripts and a protein with novel internal repeats are associated with a Drosophila segment polarity gene. , 1989, Genes & development.