Metal Oxide Semi-Conductor Gas Sensors in Environmental Monitoring

Metal oxide semiconductor gas sensors are utilised in a variety of different roles and industries. They are relatively inexpensive compared to other sensing technologies, robust, lightweight, long lasting and benefit from high material sensitivity and quick response times. They have been used extensively to measure and monitor trace amounts of environmentally important gases such as carbon monoxide and nitrogen dioxide. In this review the nature of the gas response and how it is fundamentally linked to surface structure is explored. Synthetic routes to metal oxide semiconductor gas sensors are also discussed and related to their affect on surface structure. An overview of important contributions and recent advances are discussed for the use of metal oxide semiconductor sensors for the detection of a variety of gases—CO, NOx, NH3 and the particularly challenging case of CO2. Finally a description of recent advances in work completed at University College London is presented including the use of selective zeolites layers, new perovskite type materials and an innovative chemical vapour deposition approach to film deposition.

[1]  Kyung Won Chung,et al.  Gas sensing properties of WO3 thick film for NO2 gas dependent on process condition , 1999 .

[2]  Giorgio Sberveglieri,et al.  Ozone detection using low-power-consumption metal–oxide gas sensors , 1999 .

[3]  Subhash Bhatia,et al.  Zeolite Membrane Based Selective Gas Sensors for Monitoring and Control of Gas Emissions , 2007 .

[4]  N. Yamazoe New approaches for improving semiconductor gas sensors , 1991 .

[5]  C. J. Panchal,et al.  Fabrication of carbon dioxide gas sensor and its alarm system using indium tin oxide (ITO) thin films , 1994 .

[6]  Dominique Rebière,et al.  A surface acoustic wave gas sensor: detection of organophosphorus compounds , 1995 .

[7]  Ivan P. Parkin,et al.  Metal oxide semiconductor gas sensors utilizing a Cr-zeolite catalytic layer for improved selectivity , 2005 .

[8]  Norio Miura,et al.  Tungsten Oxide-Based Semiconductor Sensor Highly Sensitive to NO and NO2 , 1991 .

[9]  Russell Binions,et al.  Thin films for solar control applications , 2010, Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences.

[10]  M Virtanen,et al.  Chronic bronchitis, emphysema, and low-level air pollution in Helsinki, 1987-1989. , 1994, Environmental research.

[11]  Christophe Pijolat,et al.  Development of tin oxide material by screen-printing technology for micro-machined gas sensors , 2003 .

[12]  H. J. Geise,et al.  Chemiresistive sensors of electrically conducting poly(2,5-thienylene vinylene) and copolymers: their responses to nine organic vapours , 1998 .

[13]  N. Cobb,et al.  Unintentional carbon monoxide-related deaths in the United States, 1979 through 1988. , 1991, JAMA.

[14]  Ratna Naik,et al.  Bandgap engineering by tuning particle size and crystallinity of SnO2-Fe2O3 nanocrystalline composite thin films , 2008 .

[15]  Noritaka Mizuno,et al.  CO2-sensing characteristics of SnO2 element modified by La2O3 , 1993 .

[16]  Gunter Hagen,et al.  Selective impedance based gas sensors for hydrocarbons using ZSM-5 zeolite films with chromium(III)oxide interface , 2006 .

[17]  Ivan P. Parkin,et al.  Control of semiconducting oxide gas-sensor microstructure by application of an electric field during aerosol-assisted chemical vapour deposition , 2005 .

[18]  Warren B. Cross,et al.  Aerosol assisted chemical vapour deposition of tungsten oxide films from polyoxotungstate precursors: active photocatalysts. , 2003, Chemical communications.

[19]  Anne-Claude Romain,et al.  The use of sensor arrays for environmental monitoring: interests and limitations. , 2003, Journal of environmental monitoring : JEM.

[20]  David E. Williams Semiconducting oxides as gas-sensitive resistors , 1999 .

[21]  Ivan P. Parkin,et al.  Atmospheric pressure chemical vapour deposition of Cr2−xTixO3(CTO) thin films (≤3 µm) on to gas sensing substrates , 2003 .

[22]  Anna Vilà,et al.  Deposition on micromachined silicon substrates of gas sensitive layers obtained by a wet chemical route: a CO/CH4 high performance sensor , 2001 .

[23]  Gunter Hagen,et al.  Integrated impedance based hydro‐carbon gas sensors with Na‐zeolite/Cr2O3 thin‐film interfaces: From physical modeling to devices , 2011 .

[24]  Zulfiqur Ali,et al.  Chemical Sensors for Electronic Nose Systems , 2005 .

[25]  Gerd Sulz,et al.  CO and CO2 thin-film SnO2 gas sensors on Si substrates , 1994 .

[26]  Norio Miura,et al.  Grain‐Size Effects in Tungsten Oxide‐Based Sensor for Nitrogen Oxides , 1994 .

[27]  Stephen W Marshall,et al.  Risk and protective factors for fires, burns, and carbon monoxide poisoning in U.S. households. , 2005, American journal of preventive medicine.

[28]  Dewi W. Lewis,et al.  Discrimination Effects in Zeolite Modified Metal Oxide Semiconductor Gas Sensors , 2011 .

[29]  S. Akbar,et al.  Solid‐State Gas Sensors: A Review , 1992 .

[30]  Ivan P. Parkin,et al.  A microstructural model of semiconducting gas sensor response: The effects of sintering temperature on the response of chromium titanate (CTO) to carbon monoxide , 2006 .

[31]  K. Aguir,et al.  Correlation between rf-sputtering parameters and WO3 sensor response towards ozone , 2007 .

[32]  N. Bârsan,et al.  Electronic nose: current status and future trends. , 2008, Chemical reviews.

[33]  T Meredith,et al.  Carbon monoxide poisoning , 1988, British medical journal.

[34]  D.P. Mann,et al.  Transition Metal Exchanged Zeolite Layers for Selectivity Enhancement of Metal-Oxide Semiconductor Gas Sensors , 2007, IEEE Sensors Journal.

[35]  Ichiro Matsubara,et al.  Gas response, response time and selectivity of a resistive CO sensor based on two connected CeO2 thick films with various particle sizes , 2009 .

[36]  N. Barsan,et al.  Fundamental and practical aspects in the design of nanoscaled SnO2 gas sensors: a status report , 1999 .

[37]  Tetsuya Kida,et al.  Highly sensitive NO2 sensors using lamellar-structured WO3 particles prepared by an acidification method , 2009 .

[38]  Shinzo Takata,et al.  Zinc‐oxide thin‐film ammonia gas sensors with high sensitivity and excellent selectivity , 1986 .

[39]  Norio Miura,et al.  Development of gas sensors for environmental protection , 1995 .

[40]  P. D. Patel,et al.  Indium Tin Oxide Thin-Film Sensor for Detection of Volatile Organic Compounds (VOCs) , 2006 .

[41]  S. A. Patil,et al.  Modified zinc oxide thick film resistors as NH3 gas sensor , 2006 .

[42]  Prabir K. Dutta,et al.  Study of the resistance behavior of anatase and rutile thick films towards carbon monoxide and oxygen at high temperatures and possibilities for sensing applications , 2009 .

[43]  P. Moseley,et al.  Solid state gas sensors , 1997 .

[44]  Kwang Ho Kim,et al.  CO2-sensing characteristics of SnO2 thick film by coating lanthanum oxide , 2000 .

[45]  S. Godtfredsen,et al.  Ullmann ' s Encyclopedia of Industrial Chemistry , 2017 .

[46]  Thomas Maier,et al.  Ultrathin SnO2 gas sensors fabricated by spray pyrolysis for the detection of humidity and carbon monoxide , 2008 .

[47]  Dewi W. Lewis,et al.  Zeolite Modification: Towards Discriminating Metal Oxide Gas Sensors , 2009 .

[48]  S. Midlam-Mohler,et al.  Ceramic-based chemical sensors, probes and field-tests in automobile engines , 2003 .

[49]  Ivan P. Parkin,et al.  Thermochromic Coatings for Intelligent Architectural Glazing , 2008 .

[50]  Russell Binions,et al.  BaxWOy thick film as a carbon dioxide sensor , 2011, 2011 IEEE SENSORS Proceedings.

[51]  K. Clemitshaw,et al.  Ozone and other secondary photochemical pollutants: chemical processes governing their formation in the planetary boundary layer , 2000 .

[52]  Alphus D. Wilson,et al.  Applications and Advances in Electronic-Nose Technologies , 2009, Sensors.

[53]  R. Martin,et al.  Electronic Structure: Basic Theory and Practical Methods , 2004 .

[54]  P. D. Patel,et al.  Indium tin oxide (ITO) thin film gas sensor for detection of methanol at room temperature , 2003 .

[55]  Noboru Yamazoe,et al.  Interactions of tin oxide surface with O2, H2O AND H2 , 1979 .

[56]  Lallan Yadava,et al.  Sensing properties of CdS-doped tin oxide thick film gas sensor , 2010 .

[57]  Russell Binions,et al.  Electric fields in the chemical vapour deposition growth of vanadium dioxide thin films. , 2011, Journal of nanoscience and nanotechnology.

[58]  Ivan P. Parkin,et al.  Atmospheric Pressure Chemical Vapor Deposition of Crystalline Monoclinic WO3 and WO3-x Thin Films from Reaction of WCl6 with O-Containing Solvents and Their Photochromic and Electrochromic Properties , 2005 .

[59]  Prabir K. Dutta,et al.  High‐Temperature Ceramic Gas Sensors: A Review , 2006 .

[60]  Gunter Hagen,et al.  Zeolites — Versatile materials for gas sensors , 2008 .

[61]  J. Halbritter,et al.  Structural and electrical characterization of PVD-deposited SnO2 films for gas-sensor application , 1995 .

[62]  Luca Francioso,et al.  SOLID STATE GAS SENSORS: STATE OF THE ART AND FUTURE ACTIVITIES , 2003 .

[63]  Eduard Llobet,et al.  Fruit ripeness monitoring using an Electronic Nose , 2000 .

[64]  Philippe Benech,et al.  Gas separation with a zeolite filter, application to the selectivity enhancement of chemical sensors , 2000 .

[65]  Russell Binions,et al.  On the effects of electric fields in aerosol assisted chemical vapour deposition reactions of vanadyl acetylacetonate solutions in ethanol. , 2011, Journal of nanoscience and nanotechnology.

[66]  Aman Mahajan,et al.  SnO2 thick films for room temperature gas sensing applications , 2009 .

[67]  A. Cornet,et al.  A new CO2 gas sensing material , 2003 .

[68]  Jiann Shieh,et al.  WO3 and WTiO thin-film gas sensors prepared by sol–gel dip-coating , 2002 .

[69]  Ivan P. Parkin,et al.  Aerosol assisted chemical vapour deposition of WO3 thin films from tungsten hexacarbonyl and their gas sensing properties , 2007 .

[70]  N. Bârsan,et al.  In2O3 and MoO3–In2O3 thin film semiconductor sensors: interaction with NO2 and O3 , 1998 .

[71]  Duk-Dong Lee,et al.  Nitrogen oxides-sensing characteristics of WO3-based nanocrystalline thick film gas sensor , 1999 .

[72]  James A. Fay,et al.  An analytical diffusion model for long distance transport of air pollutants , 1980 .

[73]  Michael Wegmann,et al.  NO2-induced airway inflammation is associated with progressive airflow limitation and development of emphysema-like lesions in C57bl/6 mice. , 2005, Experimental and toxicologic pathology : official journal of the Gesellschaft fur Toxikologische Pathologie.

[74]  David J. Williams,et al.  Gas Sensing Properties of Composite Tungsten Trioxide-Zeolite Thick Films , 2009 .

[75]  Golam Newaz,et al.  Residual stresses and Raman shift relation in anatase TiO2 thin film , 2009 .

[76]  E. Suh,et al.  TiO2 thin film gas sensor for monitoring ammonia , 2007 .

[77]  U. Weimar,et al.  Understanding the fundamental principles of metal oxide based gas sensors; the example of CO sensing with SnO2 sensors in the presence of humidity , 2003 .

[78]  Joseph R. Stetter,et al.  Effect of air humidity on gas response of SnO2 thin film ozone sensors , 2007 .

[79]  Yun Wang,et al.  A Review of Carbon Nanotubes-Based Gas Sensors , 2009, J. Sensors.

[80]  D. Rickerby,et al.  Nanostructured Metal Oxide Gas Sensors for Air-Quality Monitoring , 2010 .

[81]  Matteo Ferroni,et al.  NO2 monitoring with a novel p-type material: TiO , 2000 .

[82]  N. Yamazoe,et al.  Oxide Semiconductor Gas Sensors , 2003 .

[83]  Norio Miura,et al.  Metal oxide semiconductor N2O sensor for medical use , 2001 .

[84]  S. Morrison Selectivity in semiconductor gas sensors , 1987 .

[85]  Gerhard Wiegleb,et al.  Semiconductor gas sensor for detecting NO and CO traces in ambient air of road traffic , 1994 .

[86]  Ivan P. Parkin,et al.  Zeolite-modified WO3 gas sensors – Enhanced detection of NO2 , 2011 .

[87]  Ralf Moos,et al.  Zeolite cover layer for selectivity enhancement of p-type semiconducting hydrocarbon sensors , 2008 .

[88]  David J. Williams,et al.  Zeolite Modified Discriminating Gas Sensors , 2008 .

[89]  Benno Margesin,et al.  Gas-sensing device implemented on a micromachined membrane: A combination of thick-film and very large scale integrated technologies , 2000 .

[90]  Xingfang Hu,et al.  Fabrication and electrochromic properties of spin-coated TiO2 thin films from peroxo-polytitanic acid , 1999 .

[91]  Min-Suk Lee,et al.  A new process for fabricating CO2-sensing layers based on BaTiO3 and additives , 2000 .

[92]  P J Barth,et al.  Quantitative analysis of parenchymal and vascular alterations in NO2-induced lung injury in rats. , 1995, The European respiratory journal.

[93]  R E Fromm,et al.  Carbon monoxide poisoning: a review for clinicians. , 1999, The Journal of emergency medicine.

[94]  M. F. Al-Kuhaili,et al.  Carbon monoxide gas-sensing properties of electron-beam deposited cerium oxide thin films , 2008 .

[95]  A. Cornet,et al.  Study of the CO and humidity interference in La doped tin oxide CO2 gas sensor , 2003 .

[96]  A. Cornet,et al.  Use of zeolite films to improve the selectivity of reactive gas sensors , 2003 .

[97]  J. Kendall Inorganic Chemistry , 1944, Nature.

[98]  Claire J. Carmalt,et al.  A comparison of the gas sensing properties of solid state metal oxide semiconductor gas sensors produced by atmospheric pressure chemical vapour deposition and screen printing , 2006 .

[99]  Gaorong Han,et al.  Investigation of structure and properties of N-doped TiO2 thin films grown by APCVD , 2006 .

[100]  W A Groves,et al.  Establishing a limit of recognition for a vapor sensor array. , 1998, Analytical chemistry.

[101]  T. Seiyama,et al.  A New Detector for Gaseous Components Using Semiconductive Thin Films. , 1962 .

[102]  David E Williams,et al.  Development of low-cost ozone and nitrogen dioxide measurement instruments suitable for use in an air quality monitoring network , 2009, 2009 IEEE Sensors.

[103]  K. Choy Chemical vapour deposition of coatings , 2003 .

[104]  Richard B. Brown,et al.  Screen printing: a technology for the batch fabrication of integrated chemical-sensor arrays , 1995 .

[105]  Claire J. Carmalt,et al.  Aerosol-assisted chemical vapour deposition of sodium fluoride thin films , 2004 .

[106]  J. Karp,et al.  Unintentional carbon-monoxide related deaths in the United States, 1979 through 1988: Cobb N, Etzel RA JAMA 266:659–663 Aug 1991 , 1992 .

[107]  Ivan P. Parkin,et al.  The APCVD of tungsten oxide thin films from reaction of WCl6 with ethanol and results on their gas-sensing properties , 2007 .

[108]  Nicolae Barsan,et al.  Neodymium Dioxide Carbonate as a Sensing Layer for Chemoresistive CO2 Sensing , 2009 .

[109]  A. Bouwman,et al.  Global air emission inventories for anthropogenic sources of NOx, NH3 and N2O in 1990 , 1998 .

[110]  Correction: Comroe and Dripps revisited , 1988 .

[111]  U. Weimar,et al.  Understanding the fundamental principles of metal oxide based gas sensors; the example of CO sensing with SnO2 sensors in the presence of humidity , 2003 .

[112]  Michael E. A. Warwick,et al.  The Application of Electric Fields to Aerosol Assisted Chemical Vapor Deposition Reactions , 2011 .

[113]  Norio Miura,et al.  Study of WO3-based sensing materials for NH3 and NO detection , 2000 .

[114]  Ivan P. Parkin,et al.  The gas-sensing properties of WO3-x thin films deposited via the atmospheric pressure chemical vapour deposition (APCVD) of WCl6 with ethanol , 2008 .

[115]  Marco Faccio,et al.  Cross sensitivity and stability of NO2 sensors from WO3 thin film , 1996 .

[116]  Ken-ichi Shimizu,et al.  Effect of acidity and pore diameter of zeolites on detection of base molecules by zeolite thick film sensor , 2011 .

[117]  R. K. Roy,et al.  Synthesis of SnO2/Pd composite films by PVD route for a liquid petroleum gas sensor , 2004 .

[118]  H. Gemmeke,et al.  Development of an analytical microsystem for organic gas detection based on surface acoustic wave resonators , 1995 .

[119]  H. S. Wolff,et al.  iRun: Horizontal and Vertical Shape of a Region-Based Graph Compression , 2022, Sensors.

[120]  Gregory P. Harmer,et al.  Semiconducting metal oxide sensor array for the selective detection of combustion gases , 2003 .

[121]  José Pedro Santos,et al.  Ultrafine grain-size tin-oxide films for carbon monoxide monitoring in urban environments , 1995 .

[122]  Gunter Hagen,et al.  Impedance spectroscopy of Na+ conducting zeolite ZSM-5 , 2006 .

[123]  Gian Carlo Cardinali,et al.  Development of ultra-low-power consumption MOX sensors with ppb-level VOC detection capabilities for emerging applications , 2008 .