From singular to nonsingular filtering of periodic systems: filling the gap with the spectral interactor matrix

With reference to periodic discrete-time systems, the concept of the periodic spectral interactor matrix operator (PSIMO) is introduced. Such an interactor enables one to transform the singular system into a nonsingular one with identical spectral properties. This concept is useful to characterize the family of periodic solutions of the singular periodic Riccati equation arising from the singular filtering problem. The PSIMO is also a synthetic tool to represent the invariant zeros structure at infinity (delays) of periodic systems in an operational fashion.

[1]  Erik I. Verriest,et al.  Realization of discrete-time periodic systems from input-output data , 1995 .

[2]  S. Bittanti,et al.  Analysis of discrete-time linear periodic systems , 1996 .

[3]  C. Tsiligiannis,et al.  Multivariable self-tuning control via the right interactor matrix , 1986 .

[4]  J. Maciejowski,et al.  Asymptotic Recovery for Discrete-Time Systems , 1983, 1983 American Control Conference.

[5]  Patrizio Colaneri,et al.  The realization problem for linear periodic systems , 1995, Autom..

[6]  S. Bittanti,et al.  The spectral interactor matrix for discrete-time periodic systems , 1995, Proceedings of 1995 34th IEEE Conference on Decision and Control.

[7]  Andrew P. Paplinski,et al.  An algorithm for the calculation of a nilpotent interactor matrix for linear multivariable systems , 1987 .

[8]  R. Scattolini,et al.  LQG optimal control of multirate sampled-data systems , 1992 .

[9]  S. Bittanti,et al.  The difference periodic Ricati equation for the periodic prediction problem , 1988 .

[10]  Patrizio Colaneri,et al.  Singular filtering via spectral interactor matrix , 1995, IEEE Trans. Autom. Control..

[11]  L. Silverman Inversion of multivariable linear systems , 1969 .

[12]  S. Bittanti Deterministic and stochastic linear periodic systems , 1986 .

[13]  P. Falb,et al.  Invariants and Canonical Forms under Dynamic Compensation , 1976 .

[14]  Uri Shaked,et al.  Explicit solution to the singular discrete-time stationary linear filtering problem , 1985, IEEE Transactions on Automatic Control.

[15]  Patrizio Colaneri,et al.  Towards Robust Control of Periodic Systems with an LQG/LTR Strategy , 1993 .

[16]  S. Bittanti,et al.  The Periodic Riccati Equation , 1991 .

[17]  Patrizio Colaneri,et al.  The spectral interactor matrix for the singular Riccati equation , 1994, Proceedings of 1994 33rd IEEE Conference on Decision and Control.

[18]  S. Bittanti,et al.  The periodic Riccati equation: Existence of a periodic positive sernidefinite solution , 1987, 26th IEEE Conference on Decision and Control.

[19]  Michael G. Safonov,et al.  Zero cancelling compensators for singular control problems and their application to the inner–outer factorization problem , 1992 .

[20]  Romeo Ortega,et al.  Interactor structure estimation for adaptive control of discrete-time multivariable nondecouplable systems , 1993, Autom..

[21]  Giuseppe De Nicolao,et al.  Spectral factorization of linear periodic systems with application to the optimal prediction of periodic ARMA models , 1993, Autom..

[22]  R. Scattolini,et al.  The output control problem for multirate sampled-data systems , 1992, [1992] Proceedings of the 31st IEEE Conference on Decision and Control.