Symbolic partition refinement with automatic balancing of time and space

State space lumping is one of the classical means to fight the state space explosion problem in state-based performance evaluation and verification. Particularly when numerical algorithms are applied to analyze a Markov model, one often observes that those algorithms do not scale beyond systems of moderate size. To alleviate this problem, symbolic lumping algorithms have been devised to effectively reduce very large-but symbolically represented-Markov models to moderate size explicit representations. This lumping step partitions the Markov model in such a way that any numerical analysis carried out on the lumped model is guaranteed to produce exact results for the original system. But even this lumping preprocessing may fail due to time or memory limitations. This paper discusses the two main approaches to symbolic lumping, and combines them to improve on their respective limitations. The algorithm automatically converts between known symbolic partition representations in order to provide a trade-off between memory consumption and runtime. We show how to apply this algorithm for the lumping of Markov chains, but the same techniques can be adapted in a straightforward way to other models like Markov reward models, labeled transition systems, or interactive Markov chains.

[1]  William H. Sanders,et al.  Dependability Evaluation Using Composed SAN-Based Reward Models , 1992, J. Parallel Distributed Comput..

[2]  Matthias Kuntz,et al.  Symbolic Performance and Dependability Evaluation with the Tool CASPA , 2004, FORTE Workshops.

[3]  William H. Sanders,et al.  Optimal state-space lumping in Markov chains , 2003, Inf. Process. Lett..

[4]  G. Ciardo,et al.  ON THE USE OF KRONECKER OPERATORS FOR THE SOLUTION OF GENERALIZED STOCHASTIC PETRI NETS , 1996 .

[5]  Paul J. Schweitzer,et al.  Aggregation Methods for Large Markov Chains , 1983, Computer Performance and Reliability.

[6]  John G. Kemeny,et al.  Finite Markov Chains. , 1960 .

[7]  Håkan L. S. Younes,et al.  Numerical vs. statistical probabilistic model checking , 2006, International Journal on Software Tools for Technology Transfer.

[8]  Andrew Hinton,et al.  PRISM: A Tool for Automatic Verification of Probabilistic Systems , 2006, TACAS.

[9]  Bernd Becker,et al.  Compositional Performability Evaluation for STATEMATE , 2006, Third International Conference on the Quantitative Evaluation of Systems - (QEST'06).

[10]  Salem Derisavi Signature-based Symbolic Algorithm for Optimal Markov Chain Lumping , 2007, Fourth International Conference on the Quantitative Evaluation of Systems (QEST 2007).

[11]  Marta Z. Kwiatkowska,et al.  Symmetry Reduction for Probabilistic Model Checking , 2006, CAV.

[12]  David Park,et al.  Concurrency and Automata on Infinite Sequences , 1981, Theoretical Computer Science.

[13]  Markus Siegle,et al.  Analysis of Markov reward models using zero-suppressed multi-terminal BDDs , 2006, valuetools '06.

[14]  Giovanni Chiola,et al.  Stochastic Well-Formed Colored Nets and Symmetric Modeling Applications , 1993, IEEE Trans. Computers.

[15]  Stephen Gilmore,et al.  An Efficient Algorithm for Aggregating PEPA Models , 2001, IEEE Trans. Software Eng..

[16]  Ingo Wegener,et al.  Branching Programs and Binary Decision Diagrams , 1987 .

[17]  Kim G. Larsen,et al.  Bisimulation through probabilistic testing (preliminary report) , 1989, POPL '89.

[18]  Enrico Macii,et al.  Algebric Decision Diagrams and Their Applications , 1997, ICCAD '93.

[19]  William H. Sanders,et al.  Solution of Large Markov Models Using Lumping Techniques and Symbolic Data Structures , 2005 .

[20]  Salem Derisavi,et al.  A Symbolic Algorithm for Optimal Markov Chain Lumping , 2007, TACAS.

[21]  Bernd Becker,et al.  Sigref- A Symbolic Bisimulation Tool Box , 2006, ATVA.

[22]  Shin-ichi Minato,et al.  Zero-Suppressed BDDs for Set Manipulation in Combinatorial Problems , 1993, 30th ACM/IEEE Design Automation Conference.

[23]  Jane Hillston,et al.  A compositional approach to performance modelling , 1996 .

[24]  Holger Hermanns,et al.  Stochastic process algebras: integrating qualitative and quantitative modelling , 1994, FORTE.

[25]  Thomas Filkorn,et al.  Generating BDDs for symbolic model checking in CCS , 2005, Distributed Computing.

[26]  M. Siegle,et al.  Multi Terminal Binary Decision Diagrams to Represent and Analyse Continuous Time Markov Chains , 1999 .

[27]  William H. Sanders,et al.  Reduced Base Model Construction Methods for Stochastic Activity Networks , 1991, IEEE J. Sel. Areas Commun..

[28]  Masahiro Fujita,et al.  Spectral Transforms for Large Boolean Functions with Applications to Technology Mapping , 1997, Formal Methods Syst. Des..

[29]  Simona Orzan,et al.  A distributed algorithm for strong bisimulation reduction of state spaces , 2002, PDMC@CONCUR.

[30]  Holger Hermanns,et al.  Bisimulation Algorithms for Stochastic Process Algebras and Their BDD-Based Implementation , 1999, ARTS.

[31]  Marta Z. Kwiatkowska,et al.  Probabilistic model checking of complex biological pathways , 2008, Theor. Comput. Sci..

[32]  Kim G. Larsen,et al.  Bisimulation through Probabilistic Testing , 1991, Inf. Comput..

[33]  Holger Hermanns,et al.  On the use of MTBDDs for performability analysis and verification of stochastic systems , 2003, J. Log. Algebraic Methods Program..

[34]  P. Buchholz Exact and ordinary lumpability in finite Markov chains , 1994, Journal of Applied Probability.

[35]  Oded Maler,et al.  On the Representation of Probabilities over Structured Domains , 1999, CAV.

[36]  Sarma B. K. Vrudhula,et al.  Formal Verification Using Edge-Valued Binary Decision Diagrams , 1996, IEEE Trans. Computers.

[37]  Simona Orzan,et al.  Distributed State Space Minimization , 2003, Electron. Notes Theor. Comput. Sci..

[38]  Alan Bundy,et al.  Constructing Induction Rules for Deductive Synthesis Proofs , 2006, CLASE.

[39]  Simona Orzan,et al.  Distributed Branching Bisimulation Reduction of State Spaces , 2003, Electron. Notes Theor. Comput. Sci..

[40]  Paola Lecca,et al.  Cell Cycle Control in Eukaryotes: A BioSpi model , 2007, Electron. Notes Theor. Comput. Sci..

[41]  R. I. Bahar,et al.  Algebraic decision diagrams and their applications , 1993, Proceedings of 1993 International Conference on Computer Aided Design (ICCAD).

[42]  Kishor S. Trivedi,et al.  Stochastic Petri Net Models of Polling Systems , 1990, IEEE J. Sel. Areas Commun..

[43]  John G. Kemeny,et al.  Finite Markov chains , 1960 .

[44]  Marta Z. Kwiatkowska,et al.  Probabilistic symbolic model checking with PRISM: a hybrid approach , 2004, International Journal on Software Tools for Technology Transfer.

[45]  Joost-Pieter Katoen,et al.  Bisimulation Minimisation Mostly Speeds Up Probabilistic Model Checking , 2007, TACAS.

[46]  Holger Hermanns,et al.  Exploiting Symmetries in Stochastic Process Algebras , 1998, ESM.

[47]  John E. Hopcroft,et al.  An n log n algorithm for minimizing states in a finite automaton , 1971 .

[48]  Masahiro Fujita,et al.  Multi-Terminal Binary Decision Diagrams: An Efficient Data Structure for Matrix Representation , 1997, Formal Methods Syst. Des..

[49]  Souheib Baarir,et al.  On the use of exact lumpability in partially symmetrical well-formed nets , 2005, Second International Conference on the Quantitative Evaluation of Systems (QEST'05).

[50]  Bernd Becker,et al.  Optimization techniques for BDD-based bisimulation computation , 2007, GLSVLSI '07.

[51]  Yung-Te Lai,et al.  Edge-valued binary decision diagrams for multi-level hierarchical verification , 1992, DAC '92.

[52]  William H. Sanders,et al.  Symbolic state-space exploration and numerical analysis of state-sharing composed models , 2004 .

[53]  Gianfranco Ciardo,et al.  A data structure for the efficient Kronecker solution of GSPNs , 1999, Proceedings 8th International Workshop on Petri Nets and Performance Models (Cat. No.PR00331).

[54]  Bernd Becker,et al.  Compositional Dependability Evaluation for STATEMATE , 2009, IEEE Transactions on Software Engineering.

[55]  Robert de Simone,et al.  Symbolic Bisimulation Minimisation , 1992, CAV.