A Probability for Classification Based on the Dirichlet Process Mixture Model

In this paper we provide an explicit probability distribution for classification purposes when observations are viewed on the real line and classifications are to be based on numerical orderings. The classification model is derived from a Bayesian nonparametric mixture of Dirichlet process model; with some modifications. The resulting approach then more closely resembles a classical hierarchical grouping rule in that it depends on sums of squares of neighboring values. The proposed probability model for classification relies on a numerical procedure based on a reversible Markov chain Monte Carlo (MCMC) algorithm for determining the probabilities. Some numerical illustrations comparing with alternative ideas for classification are provided.

[1]  Charalambos A. Charalambides,et al.  Combinatorial Methods in Discrete Distributions , 2005 .

[2]  F. Quintana,et al.  Bayesian clustering and product partition models , 2003 .

[3]  J. H. Ward Hierarchical Grouping to Optimize an Objective Function , 1963 .

[4]  Michael,et al.  On a Class of Bayesian Nonparametric Estimates : I . Density Estimates , 2008 .

[5]  Ramsés H. Mena,et al.  Controlling the reinforcement in Bayesian non‐parametric mixture models , 2007 .

[6]  S. Godsill On the Relationship Between Markov chain Monte Carlo Methods for Model Uncertainty , 2001 .

[7]  D. M. Titterington,et al.  Variational approximations in Bayesian model selection for finite mixture distributions , 2007, Comput. Stat. Data Anal..

[8]  P. Green,et al.  On Bayesian Analysis of Mixtures with an Unknown Number of Components (with discussion) , 1997 .

[9]  Ramsés H. Mena,et al.  Hierarchical Mixture Modeling With Normalized Inverse-Gaussian Priors , 2005 .

[10]  J. Sethuraman A CONSTRUCTIVE DEFINITION OF DIRICHLET PRIORS , 1991 .

[11]  M. Escobar Estimating Normal Means with a Dirichlet Process Prior , 1994 .

[12]  P. Green,et al.  Corrigendum: On Bayesian analysis of mixtures with an unknown number of components , 1997 .

[13]  Charalambos A. Charalambides,et al.  Combinatorial Methods in Discrete Distributions: Charalambides/Combinatorial , 2005 .

[14]  Albert Y. Lo,et al.  On a Class of Bayesian Nonparametric Estimates: I. Density Estimates , 1984 .

[15]  P. Green Reversible jump Markov chain Monte Carlo computation and Bayesian model determination , 1995 .

[16]  M. Escobar,et al.  Bayesian Density Estimation and Inference Using Mixtures , 1995 .

[17]  Lancelot F. James,et al.  Gibbs Sampling Methods for Stick-Breaking Priors , 2001 .

[18]  K. Roeder Density estimation with confidence sets exemplified by superclusters and voids in the galaxies , 1990 .

[19]  A. Lijoi,et al.  Models Beyond the Dirichlet Process , 2009 .