Using Toe-Off Impulse to Control Chaos in the Simplest Walking Model via Artificial Neural Network

Controlling chaos in a passive biped robot with an artificial neural network is investigated in this paper. The dynamical model is based on the compass-like biped robot proposed by Garcia et al. (1998) with a point-mass at the hip and infinitesimal point-masses at the feet ignoring the scuffing situation. The governing dynamics and chaotic behavior of the system is explored and the bifurcation diagram is drawn with respect to the ramp slope. Controlling chaos is based on stabilizing the unstable periodic orbits in the chaotic attractor. The UPOs are detected using an iterated algorithm. The artificial neural network is constructed using the information of seven previous steps and the control parameters in each one. The network is trained to find the appropriate control parameter in order to put the next step on the unstable periodic orbit. The control parameter is the toe-off impulse at the heel strike.

[1]  Jane E. Clark,et al.  A longitudinal study of intralimb coordination in the first year of independent walking: a dynamical systems analysis. , 1993, Child development.

[2]  Bernard Espiau,et al.  A Study of the Passive Gait of a Compass-Like Biped Robot , 1998, Int. J. Robotics Res..

[3]  D. Sternad,et al.  Slower speeds in patients with diabetic neuropathy lead to improved local dynamic stability of continuous overground walking. , 2000, Journal of biomechanics.

[4]  Ying-Cheng Lai,et al.  Controlling chaos , 1994 .

[5]  Satoshi Suzuki,et al.  Passive walking towards running , 2005 .

[6]  Harry Dankowicz,et al.  Low-Cost Control of Repetitive Gait in Passive Bipedal Walkers , 2005, Int. J. Bifurc. Chaos.

[7]  Bernard Espiau,et al.  Limit Cycles in a Passive Compass Gait Biped and Passivity-Mimicking Control Laws , 1997, Auton. Robots.

[8]  Pablo González de Santos,et al.  A comparative study of stability margins for walking machines , 2002, Robotica.

[9]  Benoit Thuilot,et al.  Compass-Like Biped Robot Part I : Stability and Bifurcation of Passive Gaits , 1996 .

[10]  Yeng Chai Soh,et al.  Planning and control of a biped robot , 1999 .

[11]  M. Coleman,et al.  The simplest walking model: stability, complexity, and scaling. , 1998, Journal of biomechanical engineering.

[12]  Jeffrey M. Hausdorff,et al.  Altered fractal dynamics of gait: reduced stride-interval correlations with aging and Huntington's disease. , 1997, Journal of applied physiology.

[13]  Guy Bessonnet,et al.  Generating globally optimised sagittal gait cycles of a biped robot , 2003, Robotica.

[14]  Jeffrey M. Hausdorff,et al.  Is walking a random walk? Evidence for long-range correlations in stride interval of human gait. , 1995, Journal of applied physiology.

[15]  Yildirim Hurmuzlu Dynamics and control of bipedal robots , 1998 .

[16]  Tad McGeer,et al.  Passive Dynamic Walking , 1990, Int. J. Robotics Res..

[17]  Martijn Wisse,et al.  Essentials of dynamic walking; analysis and design of two-legged robots , 2004 .

[18]  Stephen Yurkovich,et al.  Control of a Four-Link Biped in a Back Somersault Maneuver , 1987, IEEE Transactions on Systems, Man, and Cybernetics.

[19]  Jeffrey M. Hausdorff,et al.  Maturation of gait dynamics: stride-to-stride variability and its temporal organization in children. , 1999, Journal of applied physiology.

[20]  Bing-Hong Wang,et al.  Detecting unstable periodic orbits in chaotic systems by using an efficient algorithm , 2004 .

[21]  Bernard Brogliato,et al.  Modeling, stability and control of biped robots - a general framework , 2004, Autom..

[22]  Starrett,et al.  Control of a chaotic parametrically driven pendulum. , 1995, Physical review letters.

[23]  Russ Tedrake,et al.  Efficient Bipedal Robots Based on Passive-Dynamic Walkers , 2005, Science.

[24]  Max J. Kurz,et al.  An artificial neural network that utilizes hip joint actuations to control bifurcations and chaos in a passive dynamic bipedal walking model , 2005, Biological Cybernetics.

[25]  T. McMahon,et al.  Ballistic walking: an improved model , 1980 .

[26]  M. Kennel,et al.  Globally enumerating unstable periodic orbits for observed data using symbolic dynamics. , 2007, Chaos.

[27]  J. Yorke,et al.  Chaos: An Introduction to Dynamical Systems , 1997 .

[28]  Frans C. T. van der Helm,et al.  Passive dynamic walking model with upper body , 2004, Robotica.

[29]  Martin T. Hagan,et al.  Neural network design , 1995 .