UACD: A Local Approach for Identifying the Most Influential Spreaders in Twitter in a Distributed Environment

[1]  Joel C. Miller,et al.  EoN (Epidemics on Networks): a fast, flexible Python package for simulation, analytic approximation, and analysis of epidemics on networks , 2019, J. Open Source Softw..

[2]  Sehl Mellouli,et al.  From citizens to government policy-makers: Social media data analysis , 2019, Gov. Inf. Q..

[3]  Hassan Badir,et al.  Identification of influential spreaders in complex networks using HybridRank algorithm , 2018, Scientific Reports.

[4]  Haldun Akoglu,et al.  User's guide to correlation coefficients , 2018, Turkish journal of emergency medicine.

[5]  Yang Liu,et al.  Early Detection of Fake News on Social Media Through Propagation Path Classification with Recurrent and Convolutional Networks , 2018, AAAI.

[6]  Rinkle Rani,et al.  A parallel fuzzy clustering algorithm for large graphs using Pregel , 2017, Expert Syst. Appl..

[7]  Alex Thomo,et al.  Computation of K-Core Decomposition on Giraph , 2017, ArXiv.

[8]  Ya Zhao,et al.  Fast ranking influential nodes in complex networks using a k-shell iteration factor , 2016 .

[9]  Joseph B. Bayer,et al.  Sharing the small moments: ephemeral social interaction on Snapchat , 2016 .

[10]  Hing Kai Chan,et al.  A Mixed‐Method Approach to Extracting the Value of Social Media Data , 2016 .

[11]  Qiang Guo,et al.  Locating influential nodes via dynamics-sensitive centrality , 2015, Scientific Reports.

[12]  Claudio Martella,et al.  Practical Graph Analytics with Apache Giraph , 2015, Apress.

[13]  Alex Thomo,et al.  K-Core Decomposition of Large Networks on a Single PC , 2015, Proc. VLDB Endow..

[14]  Chung-Yuan Huang,et al.  Identifying Super-Spreader Nodes in Complex Networks , 2015 .

[15]  Ming Tang,et al.  Improving the accuracy of the k-shell method by removing redundant links: From a perspective of spreading dynamics , 2015, Scientific Reports.

[16]  Kaiqun Fu,et al.  Social Media Data Analysis for Traffic Incident Detection and Management , 2015 .

[17]  M. Tamer Özsu,et al.  An Experimental Comparison of Pregel-like Graph Processing Systems , 2014, Proc. VLDB Endow..

[18]  Subbarao Kambhampati,et al.  What We Instagram: A First Analysis of Instagram Photo Content and User Types , 2014, ICWSM.

[19]  Xin Chen,et al.  Mining Social Media Data for Understanding Students’ Learning Experiences , 2014, IEEE Transactions on Learning Technologies.

[20]  Kristina Lerman,et al.  The Simple Rules of Social Contagion , 2013, Scientific Reports.

[21]  Laks V. S. Lakshmanan,et al.  Information and Influence Propagation in Social Networks , 2013, Synthesis Lectures on Data Management.

[22]  Jie Tang,et al.  Learning to predict reciprocity and triadic closure in social networks , 2013, TKDD.

[23]  Duanbing Chen,et al.  Identifying Influential Spreaders by Weighted LeaderRank , 2013, ArXiv.

[24]  Cécile Favre,et al.  Information diffusion in online social networks: a survey , 2013, SGMD.

[25]  A. Montresor,et al.  k-Core Decomposition , 2018, Encyclopedia of Social Network Analysis and Mining. 2nd Ed..

[26]  Mahmoud Fouz,et al.  Why rumors spread so quickly in social networks , 2012, Commun. ACM.

[27]  S. Hofmann,et al.  Why Do People Use Facebook? , 2012, Personality and individual differences.

[28]  Lada A. Adamic,et al.  The role of social networks in information diffusion , 2012, WWW.

[29]  Maxi San Miguel,et al.  A measure of individual role in collective dynamics , 2010, Scientific Reports.

[30]  Sophie Ahrens,et al.  Recommender Systems , 2012 .

[31]  Jie Tang,et al.  Who will follow you back?: reciprocal relationship prediction , 2011, CIKM '11.

[32]  Vladimir Batagelj,et al.  Fast algorithms for determining (generalized) core groups in social networks , 2011, Adv. Data Anal. Classif..

[33]  Barbara Poblete,et al.  Information credibility on twitter , 2011, WWW.

[34]  Yi-Cheng Zhang,et al.  Leaders in Social Networks, the Delicious Case , 2011, PloS one.

[35]  Scott Counts,et al.  Identifying topical authorities in microblogs , 2011, WSDM '11.

[36]  Daniel M. Romero,et al.  Influence and passivity in social media , 2010, ECML/PKDD.

[37]  Mario Cataldi,et al.  Emerging topic detection on Twitter based on temporal and social terms evaluation , 2010, MDMKDD '10.

[38]  John Skvoretz,et al.  Node centrality in weighted networks: Generalizing degree and shortest paths , 2010, Soc. Networks.

[39]  Aart J. C. Bik,et al.  Pregel: a system for large-scale graph processing , 2010, SIGMOD Conference.

[40]  Mark Newman,et al.  Networks: An Introduction , 2010 .

[41]  Hairong Kuang,et al.  The Hadoop Distributed File System , 2010, 2010 IEEE 26th Symposium on Mass Storage Systems and Technologies (MSST).

[42]  Hosung Park,et al.  What is Twitter, a social network or a news media? , 2010, WWW '10.

[43]  Lev Muchnik,et al.  Identifying influential spreaders in complex networks , 2010, 1001.5285.

[44]  Virgílio A. F. Almeida,et al.  Detecting Spammers on Twitter , 2010 .

[45]  Kevin Makice,et al.  Twitter API: Up and Running: Learn How to Build Applications with the Twitter API , 2009 .

[46]  K. Iyer,et al.  All-Pairs Shortest-Paths Problem for Unweighted Graphs in O(n2 log n) Time , 2009 .

[47]  Xiang-Yang Li,et al.  Ranking of Closeness Centrality for Large-Scale Social Networks , 2008, FAW.

[48]  Gilad Mishne,et al.  Finding high-quality content in social media , 2008, WSDM '08.

[49]  Sanjay Ghemawat,et al.  MapReduce: simplified data processing on large clusters , 2008, CACM.

[50]  M. Keeling,et al.  Modeling Infectious Diseases in Humans and Animals , 2007 .

[51]  Eran Shir,et al.  A model of Internet topology using k-shell decomposition , 2006, Proceedings of the National Academy of Sciences.

[52]  Jure Leskovec,et al.  The dynamics of viral marketing , 2005, EC '06.

[53]  Ayman Farahat,et al.  Authority Rankings from HITS, PageRank, and SALSA: Existence, Uniqueness, and Effect of Initialization , 2005, SIAM J. Sci. Comput..

[54]  Sergey N. Dorogovtsev,et al.  K-core Organization of Complex Networks , 2005, Physical review letters.

[55]  Alessandro Vespignani,et al.  Large scale networks fingerprinting and visualization using the k-core decomposition , 2005, NIPS.

[56]  Alessandro Vespignani,et al.  K-core Decomposition: a Tool for the Visualization of Large Scale Networks , 2005, ArXiv.

[57]  M. Newman A measure of betweenness centrality based on random walks , 2003, Soc. Networks.

[58]  David E. Culler,et al.  The ganglia distributed monitoring system: design, implementation, and experience , 2004, Parallel Comput..

[59]  Reuven Cohen,et al.  Efficient immunization strategies for computer networks and populations. , 2002, Physical review letters.

[60]  Jaana Kekäläinen,et al.  Cumulated gain-based evaluation of IR techniques , 2002, TOIS.

[61]  S H Strogatz,et al.  Random graph models of social networks , 2002, Proceedings of the National Academy of Sciences of the United States of America.

[62]  Alessandro Vespignani,et al.  Immunization of complex networks. , 2001, Physical review. E, Statistical, nonlinear, and soft matter physics.

[63]  U. Brandes A faster algorithm for betweenness centrality , 2001 .

[64]  Alessandro Vespignani,et al.  EPIDEMIC SPREADING IN SCALEFREE NETWORKS , 2001 .

[65]  O. Diekmann,et al.  Mathematical Epidemiology of Infectious Diseases: Model Building, Analysis and Interpretation , 2000 .

[66]  Rajeev Motwani,et al.  The PageRank Citation Ranking : Bringing Order to the Web , 1999, WWW 1999.

[67]  Caroline Haythornthwaite,et al.  Studying Online Social Networks , 2006, J. Comput. Mediat. Commun..

[68]  Shisheng Shang,et al.  Distributed Hardwired Barrier Synchronization for Scalable Multiprocessor Clusters , 1995, IEEE Trans. Parallel Distributed Syst..

[69]  S. Borgatti Centrality and AIDS , 1995 .

[70]  P. Kaye Infectious diseases of humans: Dynamics and control , 1993 .

[71]  Stephen B. Seidman,et al.  Network structure and minimum degree , 1983 .

[72]  G. E. Noether,et al.  Why Kendall Tau , 1981 .

[73]  Leonard M. Freeman,et al.  A set of measures of centrality based upon betweenness , 1977 .

[74]  Gert Sabidussi,et al.  The centrality index of a graph , 1966 .