Understanding Macroscopic Heat/Mass Transfer Using Meso- and Macro-Scale Simulations

[1]  Meyya Meyyappan,et al.  Carbon Nanotubes: Science and Applications , 2007 .

[2]  D. Papavassiliou,et al.  Turbulent dispersion from elevated line sources in channel and couette flow , 2005 .

[3]  D. Papavassiliou,et al.  Random walks in nanotube composites: Improved algorithms and the role of thermal boundary resistance , 2005 .

[4]  Albert Einstein,et al.  Über die von der molekularkinetischen Theorie der Wärme geforderte Bewegung von in ruhenden Flüssigkeiten suspendierten Teilchen [AdP 17, 549 (1905)] , 2005 .

[5]  A. Einstein Über die von der molekularkinetischen Theorie der Wärme geforderte Bewegung von in ruhenden Flüssigkeiten suspendierten Teilchen [AdP 17, 549 (1905)] , 2005, Annalen der Physik.

[6]  P. Koumoutsakos MULTISCALE FLOW SIMULATIONS USING PARTICLES , 2005 .

[7]  M. Toprak,et al.  The Impact of Nanostructuring on the Thermal Conductivity of Thermoelectric CoSb3 , 2004 .

[8]  D. Donzis,et al.  Simulations of Three-Dimensional Turbulent Mixing for Schmidt Numbers of the Order 1000 , 2004 .

[9]  I. Tiselj,et al.  Convection Velocity of Temperature Fluctuations in a Turbulent Flume , 2004 .

[10]  Q. Tang A molecular dynamics simulation: the effect of finite size on the thermal conductivity in a single crystal silicon , 2004 .

[11]  Michael S. Borgas,et al.  High Schmidt number scalars in turbulence: Structure functions and Lagrangian theory , 2004 .

[12]  Hiroshi Kawamura,et al.  Very Large-Scale Structures and Their Effects on the Wall Shear-Stress Fluctuations in a Turbulent Channel Flow up to Reτ=640 , 2004 .

[13]  S. Phillpot,et al.  THERMAL TRANSPORT IN NANOFLUIDS1 , 2004 .

[14]  Pawel Keblinski,et al.  Role of thermal boundary resistance on the heat flow in carbon-nanotube composites , 2004 .

[15]  D. Papavassiliou,et al.  On the Prandtl or Schmidt number dependence of the turbulent heat or mass transfer coefficient , 2004 .

[16]  P. Orlandi,et al.  Effect of Schmidt number on small-scale passive scalar turbulence , 2003 .

[17]  J. Barrat,et al.  Finite Size Effects in Determination of Thermal Conductivities: Comparing Molecular Dynamics Results With Simple Models , 2003, cond-mat/0306053.

[18]  J. Ho,et al.  Molecular-dynamics study of energy flow and the Kapitza conductance across an interface with imperfection formed by two dielectric thin films , 2003 .

[19]  Dimitrios V. Papavassiliou,et al.  Transport properties for turbulent dispersion from wall sources , 2003 .

[20]  Thomas J. Hanratty,et al.  Lagrangian stochastic simulation of turbulent dispersion of heat markers in a channel flow , 2003 .

[21]  Ya-Ling He,et al.  SIMULATION OF FLUID FLOW AND HEAT TRANSFER IN A PLANE CHANNEL USING THE LATTICE BOLTZMANN METHOD , 2003 .

[22]  A. Majumdar,et al.  Nanoscale thermal transport , 2003, Journal of Applied Physics.

[23]  Geert Brethouwer,et al.  Micro-structure and Lagrangian statistics of the scalar field with a mean gradient in isotropic turbulence , 2003, Journal of Fluid Mechanics.

[24]  Katepalli R. Sreenivasan,et al.  Schmidt number effects on turbulent transport with uniform mean scalar gradient , 2002 .

[25]  J. Barrat,et al.  Kapitza resistance at the liquid—solid interface , 2002, cond-mat/0209607.

[26]  D. Papavassiliou Turbulent transport from continuous sources at the wall of a channel , 2002 .

[27]  B. W. Webb,et al.  Characterization of frictional pressure drop for liquid flows through microchannels , 2002 .

[28]  M. Radosavljevic,et al.  Carbon nanotube composites for thermal management , 2002, cond-mat/0205418.

[29]  D. Papavassiliou Scalar dispersion from an instantaneous line source at the wall of a turbulent channel for medium and high Prandtl number fluids , 2002 .

[30]  Shiyi Chen,et al.  LATTICE BOLTZMANN METHOD FOR FLUID FLOWS , 2001 .

[31]  P. McEuen,et al.  Thermal transport measurements of individual multiwalled nanotubes. , 2001, Physical review letters.

[32]  Albert Mosyak,et al.  Effect of wall boundary condition on scalar transfer in a fully developed turbulent flume , 2001 .

[33]  Stuart W. Churchill,et al.  Progress in the thermal sciences: AIChE Institute Lecture , 2000 .

[34]  Bruce J. Palmer,et al.  Lattice Boltzmann Algorithm for Simulating Thermal Flow in Compressible Fluids , 2000 .

[35]  Thomas J. Hanratty,et al.  Limiting behavior of turbulent scalar transport close to a wall , 2000 .

[36]  J. McLaughlin,et al.  Numerical simulation of mass transfer for bubbles in water , 2000 .

[37]  D. Wolf-Gladrow Lattice-Gas Cellular Automata and Lattice Boltzmann Models: An Introduction , 2000 .

[38]  Kwon,et al.  Unusually high thermal conductivity of carbon nanotubes , 2000, Physical review letters.

[39]  Yang Na,et al.  Use of direct numerical simulation to study the effect of Prandtl number on temperature fields , 1999 .

[40]  Prakash Vedula,et al.  Similarity scaling of acceleration and pressure statistics in numerical simulations of isotropic turbulence , 1999 .

[41]  John Kim,et al.  DIRECT NUMERICAL SIMULATION OF TURBULENT CHANNEL FLOWS UP TO RE=590 , 1999 .

[42]  A. Günther,et al.  Turbulent flow in a channel at a low Reynolds number , 1998 .

[43]  Shiyi Chen,et al.  A Novel Thermal Model for the Lattice Boltzmann Method in Incompressible Limit , 1998 .

[44]  Hiroshi Kawamura,et al.  DNS of turbulent heat transfer in channel flow with low to medium-high Prandtl number fluid , 1998 .

[45]  Sokrates T. Pantelides,et al.  Dynamical simulations of nonequilibrium processes — Heat flow and the Kapitza resistance across grain boundaries , 1997 .

[46]  Thomas J. Hanratty,et al.  Transport of a passive scalar in a turbulent channel flow , 1997 .

[47]  Isabelle Calmet,et al.  Large-eddy simulation of high-Schmidt number mass transfer in a turbulent channel flow , 1997 .

[48]  T. J. Hanratty,et al.  Interpretation of large-scale structures observed in a turbulent plane Couette flow , 1997 .

[49]  X. Shan SIMULATION OF RAYLEIGH-BENARD CONVECTION USING A LATTICE BOLTZMANN METHOD , 1996, comp-gas/9612001.

[50]  den Jmj Jaap Toonder,et al.  Origin of high kurtosis levels in the viscous sublayer : direct numerical simulation and experiment , 1996 .

[51]  S. V. Sotirchos,et al.  Transport through random arrays of conductive cylinders dispersed in a conductive matrix , 1996 .

[52]  Nobuhide Kasagi,et al.  Contribution of direct numerical simulation to understanding and modelling turbulent transport , 1995, Proceedings of the Royal Society of London. Series A: Mathematical and Physical Sciences.

[53]  T. J. Hanratty,et al.  The Use of Lagrangian Methods To Describe Turbulent Transport of Heat from a Wall , 1995 .

[54]  Donald Ziegler,et al.  Boundary conditions for lattice Boltzmann simulations , 1993 .

[55]  Chen,et al.  Lattice Boltzmann thermohydrodynamics. , 1993, Physical review. E, Statistical physics, plasmas, fluids, and related interdisciplinary topics.

[56]  Shiyi Chen,et al.  A lattice Boltzmann model for multiphase fluid flows , 1993, comp-gas/9303001.

[57]  John B. McLaughlin,et al.  An algorithm for tracking fluid particles in a spectral simulation of turbulent channel flow , 1992 .

[58]  Y. Qian,et al.  Lattice BGK Models for Navier-Stokes Equation , 1992 .

[59]  John B. McLaughlin,et al.  Large‐scale computer simulation of fully developed turbulent channel flow with heat transfer , 1991 .

[60]  J. Koelman,et al.  A Simple Lattice Boltzmann Scheme for Navier-Stokes Fluid Flow , 1991 .

[61]  T. J. Hanratty,et al.  Direct numerical simulation of passive heat transfer in a turbulent channel flow , 1991 .

[62]  Paul Lavallée,et al.  Boundaries in lattice gas flows , 1991 .

[63]  R. Pohl,et al.  Thermal boundary resistance , 1989 .

[64]  M. Maxey,et al.  Methods for evaluating fluid velocities in spectral simulations of turbulence , 1989 .

[65]  S. Pope,et al.  An algorithm for tracking fluid particles in numerical simulations of homogeneous turbulence , 1988 .

[66]  Zanetti,et al.  Use of the Boltzmann equation to simulate lattice gas automata. , 1988, Physical review letters.

[67]  P. Moin,et al.  Turbulence statistics in fully developed channel flow at low Reynolds number , 1987, Journal of Fluid Mechanics.

[68]  S. Wolfram Cellular automaton fluids 1: Basic theory , 1986 .

[69]  Philip S. Marcus,et al.  Simulation of Taylor-Couette flow. Part 1. Numerical methods and comparison with experiment , 1984, Journal of Fluid Mechanics.

[70]  Steven A. Orszag,et al.  Transition to turbulence in plane Poiseuille and plane Couette flow , 1980, Journal of Fluid Mechanics.

[71]  C. Petty A statistical theory for mass transfer near interfaces , 1975 .

[72]  P. Saffman,et al.  On the effect of the molecular diffusivity in turbulent diffusion , 1960, Journal of Fluid Mechanics.

[73]  P. Bhatnagar,et al.  A Model for Collision Processes in Gases. I. Small Amplitude Processes in Charged and Neutral One-Component Systems , 1954 .

[74]  P. Kapitza Heat Transfer and Superfluidity of Helium II , 1941 .

[75]  D. Papavassiliou,et al.  Simulation of Heat Transfer With LBM and Lagrangian Methods for Microfluidic Applications , 2005 .

[76]  D. Papavassiliou,et al.  Effects of a first-order chemical reaction on turbulent mass transfer , 2004 .

[77]  D. Papavassiliou,et al.  Turbulent heat transfer in plane couette flow , 2004 .

[78]  J. Boon The Lattice Boltzmann Equation for Fluid Dynamics and Beyond , 2003 .

[79]  N. Nguyen,et al.  Fundamentals and Applications of Microfluidics , 2002 .

[80]  N. Kasagi,et al.  The Effect of Schmidt Number on Air-Water Interface Mass Transfer , 2001 .

[81]  P. Moin,et al.  DIRECT NUMERICAL SIMULATION: A Tool in Turbulence Research , 1998 .

[82]  D. Noble Lattice Boltzmann Study of the Interstitial Hydrodynamics and Dispersion in Steady Inertial Flows in Large Randomly Packed Beds , 1997 .

[83]  David R. Noble,et al.  A consistent hydrodynamic boundary condition for the lattice Boltzmann method , 1995 .

[84]  S. V. Sotirchos,et al.  Transport properties of random arrays of freely overlapping cylinders with various orientation distributions , 1993 .

[85]  Thomas J. Hanratty,et al.  Turbulent mass transfer rates to a wall for large Schmidt numbers , 1977 .

[86]  J. Lumley,et al.  A First Course in Turbulence , 1972 .

[87]  P. L. Kapitza,et al.  THE STUDY OF HEAT TRANSFER IN HELIUM II , 1971 .

[88]  S. Chandrasekhar Stochastic problems in Physics and Astronomy , 1943 .