A sparse signal reconstruction perspective for source localization with sensor arrays

We present a source localization method based on a sparse representation of sensor measurements with an overcomplete basis composed of samples from the array manifold. We enforce sparsity by imposing penalties based on the /spl lscr//sub 1/-norm. A number of recent theoretical results on sparsifying properties of /spl lscr//sub 1/ penalties justify this choice. Explicitly enforcing the sparsity of the representation is motivated by a desire to obtain a sharp estimate of the spatial spectrum that exhibits super-resolution. We propose to use the singular value decomposition (SVD) of the data matrix to summarize multiple time or frequency samples. Our formulation leads to an optimization problem, which we solve efficiently in a second-order cone (SOC) programming framework by an interior point implementation. We propose a grid refinement method to mitigate the effects of limiting estimates to a grid of spatial locations and introduce an automatic selection criterion for the regularization parameter involved in our approach. We demonstrate the effectiveness of the method on simulated data by plots of spatial spectra and by comparing the estimator variance to the Crame/spl acute/r-Rao bound (CRB). We observe that our approach has a number of advantages over other source localization techniques, including increased resolution, improved robustness to noise, limitations in data quantity, and correlation of the sources, as well as not requiring an accurate initialization.

[1]  Paul Tseng,et al.  Robust wavelet denoising , 2001, IEEE Trans. Signal Process..

[2]  Michel X. Goemans,et al.  Semideenite Programming in Combinatorial Optimization , 1999 .

[3]  D. Donoho Superresolution via sparsity constraints , 1992 .

[4]  Yoram Bresler,et al.  Globally convergent edge-preserving regularized reconstruction: an application to limited-angle tomography , 1998, IEEE Trans. Image Process..

[5]  Arnold Neumaier,et al.  Solving Ill-Conditioned and Singular Linear Systems: A Tutorial on Regularization , 1998, SIAM Rev..

[6]  Arthur Jay Barabell,et al.  Improving the resolution performance of eigenstructure-based direction-finding algorithms , 1983, ICASSP.

[7]  H. Vincent Poor,et al.  Wireless communications : signal processing perspectives , 1998 .

[8]  Bhaskar D. Rao,et al.  An affine scaling methodology for best basis selection , 1999, IEEE Trans. Signal Process..

[9]  Marius Pesavento,et al.  Direction finding in partly calibrated sensor arrays composed of multiple subarrays , 2002, IEEE Trans. Signal Process..

[10]  A. E. Hoerl,et al.  Ridge regression: biased estimation for nonorthogonal problems , 2000 .

[11]  Michael Elad,et al.  Stable recovery of sparse overcomplete representations in the presence of noise , 2006, IEEE Transactions on Information Theory.

[12]  A. Azzalini Statistical Inference Based on the likelihood , 1996 .

[13]  Richard O. Nielsen,et al.  Sonar Signal Processing , 1991 .

[14]  Arkadi Nemirovski,et al.  Lectures on modern convex optimization - analysis, algorithms, and engineering applications , 2001, MPS-SIAM series on optimization.

[15]  S. Lawrence Marple,et al.  Observability conditions for multiple signal direction finding and array sensor localization , 1992, IEEE Trans. Signal Process..

[16]  Sven Treitel,et al.  Geophysical Signal Analysis , 2000 .

[17]  Randolph L. Moses,et al.  SELF-CALIBRATION OF UNATTENDED GROUND SENSOR NETWORKS , 2001 .

[18]  Anthony J. Weiss,et al.  Array shape calibration using sources in unknown locations-a maximum likelihood approach , 1989, IEEE Trans. Acoust. Speech Signal Process..

[19]  Bhaskar D. Rao,et al.  Sparse signal reconstruction from limited data using FOCUSS: a re-weighted minimum norm algorithm , 1997, IEEE Trans. Signal Process..

[20]  Paul S. Bradley,et al.  Feature Selection via Mathematical Programming , 1997, INFORMS J. Comput..

[21]  R. Tibshirani Regression Shrinkage and Selection via the Lasso , 1996 .

[22]  Dimitri P. Bertsekas,et al.  Nonlinear Programming , 1997 .

[23]  Harry L. Van Trees,et al.  Detection, Estimation, and Modulation Theory: Radar-Sonar Signal Processing and Gaussian Signals in Noise , 1992 .

[24]  Aharon Ben-Tal,et al.  Lectures on modern convex optimization , 1987 .

[25]  Athanassios Manikas,et al.  Modeling and estimation of ambiguities in linear arrays , 1998, IEEE Trans. Signal Process..

[26]  D. Donoho,et al.  Maximal Sparsity Representation via l 1 Minimization , 2002 .

[27]  A. Atkinson Subset Selection in Regression , 1992 .

[28]  Anthony J. Weiss,et al.  Effects of modeling errors on the resolution threshold of the MUSIC algorithm , 1994, IEEE Trans. Signal Process..

[29]  Michael Elad,et al.  Optimally sparse representation in general (nonorthogonal) dictionaries via ℓ1 minimization , 2003, Proceedings of the National Academy of Sciences of the United States of America.

[30]  Kevin Buckley,et al.  Comparative studies of MUSIC and MVDR location estimators for model perturbations , 1995, 1995 International Conference on Acoustics, Speech, and Signal Processing.

[31]  Dmitry M. Malioutov,et al.  Optimal sparse representations in general overcomplete bases , 2004, 2004 IEEE International Conference on Acoustics, Speech, and Signal Processing.

[32]  M. Skolnik,et al.  Introduction to Radar Systems , 2021, Advances in Adaptive Radar Detection and Range Estimation.

[33]  H. V. Trees Detection, Estimation, And Modulation Theory , 2001 .

[34]  Jean-Jacques Fuchs On the application of the global matched filter to DOA estimation with uniform circular arrays , 2001, IEEE Trans. Signal Process..

[35]  Jean-Jacques Fuchs Linear programming in spectral estimation. Application to array processing , 1996, 1996 IEEE International Conference on Acoustics, Speech, and Signal Processing Conference Proceedings.

[36]  Stephen P. Boyd,et al.  Applications of second-order cone programming , 1998 .

[37]  E. Barankin Locally Best Unbiased Estimates , 1949 .

[38]  J. Fuchs More on sparse representations in arbitrary bases , 2003 .

[39]  A Tikhonov,et al.  Solution of Incorrectly Formulated Problems and the Regularization Method , 1963 .

[40]  Peter M. Schultheiss,et al.  Array shape calibration using sources in unknown locations-Part I: Far-field sources , 1987, IEEE Trans. Acoust. Speech Signal Process..

[41]  Michael Elad,et al.  A generalized uncertainty principle and sparse representation in pairs of bases , 2002, IEEE Trans. Inf. Theory.

[42]  S. Sardy Robust Wavelet Denosing , 2001 .

[43]  Per Christian Hansen,et al.  REGULARIZATION TOOLS: A Matlab package for analysis and solution of discrete ill-posed problems , 1994, Numerical Algorithms.

[44]  Michael D. Zoltowski,et al.  Beamspace Root-MUSIC , 1993, IEEE Trans. Signal Process..

[45]  Petre Stoica,et al.  Maximum likelihood methods for direction-of-arrival estimation , 1990, IEEE Trans. Acoust. Speech Signal Process..

[46]  I. Johnstone,et al.  Maximum Entropy and the Nearly Black Object , 1992 .

[47]  V. Morozov On the solution of functional equations by the method of regularization , 1966 .

[48]  I. Johnstone On Minimax Estimation of a Sparse Normal Mean Vector , 1994 .

[49]  J. Shao Linear Model Selection by Cross-validation , 1993 .

[50]  Wenjiang J. Fu Penalized Regressions: The Bridge versus the Lasso , 1998 .

[51]  J. Capon High-resolution frequency-wavenumber spectrum analysis , 1969 .

[52]  Stéphane Mallat,et al.  On denoising and best signal representation , 1999, IEEE Trans. Inf. Theory.

[53]  Curtis R. Vogel,et al.  Ieee Transactions on Image Processing Fast, Robust Total Variation{based Reconstruction of Noisy, Blurred Images , 2022 .

[54]  A. Lee Swindlehurst,et al.  A Performance Analysis ofSubspace-Based Methods in thePresence of Model Errors { Part I : The MUSIC AlgorithmA , 1992 .

[55]  Zhi-Quan Luo,et al.  Robust adaptive beamforming using worst-case performance optimization via Second-Order Cone programming , 2002, 2002 IEEE International Conference on Acoustics, Speech, and Signal Processing.

[56]  Stéphane Mallat,et al.  Matching pursuits with time-frequency dictionaries , 1993, IEEE Trans. Signal Process..

[57]  Arkadi Nemirovski,et al.  On sparse representation in pairs of bases , 2003, IEEE Trans. Inf. Theory.

[58]  Gene H. Golub,et al.  Matrix computations , 1983 .

[59]  Donald Geman,et al.  Nonlinear image recovery with half-quadratic regularization , 1995, IEEE Trans. Image Process..

[60]  Mostafa Kaveh,et al.  Time-domain coherent signal-subspace wideband direction-of-arrival estimation , 1989, International Conference on Acoustics, Speech, and Signal Processing,.

[61]  Per Christian Hansen,et al.  Analysis of Discrete Ill-Posed Problems by Means of the L-Curve , 1992, SIAM Rev..

[62]  M. Viberg,et al.  Two decades of array signal processing research: the parametric approach , 1996, IEEE Signal Process. Mag..

[63]  Louis L. Scharf,et al.  Properties of quadratic covariance bounds , 1993, Proceedings of 27th Asilomar Conference on Signals, Systems and Computers.

[64]  S. Mallat A wavelet tour of signal processing , 1998 .

[65]  H. Engl,et al.  Regularization of Inverse Problems , 1996 .

[66]  Joel A. Tropp,et al.  Greed is good: algorithmic results for sparse approximation , 2004, IEEE Transactions on Information Theory.

[67]  Ehud Weinstein,et al.  A general class of lower bounds in parameter estimation , 1988, IEEE Trans. Inf. Theory.

[68]  Jos F. Sturm,et al.  A Matlab toolbox for optimization over symmetric cones , 1999 .

[69]  W. Clem Karl,et al.  3.6 – Regularization in Image Restoration and Reconstruction , 2005 .

[70]  N. J. A. Sloane,et al.  Packing Lines, Planes, etc.: Packings in Grassmannian Spaces , 1996, Exp. Math..

[71]  Jean-Jacques Fuchs,et al.  Detection and estimation of superimposed signals , 1998, Proceedings of the 1998 IEEE International Conference on Acoustics, Speech and Signal Processing, ICASSP '98 (Cat. No.98CH36181).

[72]  Jian Li,et al.  On robust Capon beamforming and diagonal loading , 2003, IEEE Trans. Signal Process..

[73]  Robert M. Freund,et al.  Interior point methods : current status and future directions , 1996 .

[74]  V. Zinoviev,et al.  Codes on euclidean spheres , 2001 .

[75]  D. Donoho,et al.  Basis pursuit , 1994, Proceedings of 1994 28th Asilomar Conference on Signals, Systems and Computers.

[76]  Michel Barlaud,et al.  Deterministic edge-preserving regularization in computed imaging , 1997, IEEE Trans. Image Process..

[77]  Charles R. Johnson,et al.  Matrix analysis , 1985, Statistical Inference for Engineers and Data Scientists.

[78]  K. Kreutz-Delgado,et al.  Basis selection in the presence of noise , 1998, Conference Record of Thirty-Second Asilomar Conference on Signals, Systems and Computers (Cat. No.98CH36284).

[79]  Anders Forsgren,et al.  Interior Methods for Nonlinear Optimization , 2002, SIAM Rev..

[80]  Athanassios Manikas,et al.  Manifold studies of nonlinear antenna array geometries , 2001, IEEE Trans. Signal Process..

[81]  David R. Musicant,et al.  Robust Linear and Support Vector Regression , 2000, IEEE Trans. Pattern Anal. Mach. Intell..

[82]  Donald Geman,et al.  Constrained Restoration and the Recovery of Discontinuities , 1992, IEEE Trans. Pattern Anal. Mach. Intell..

[83]  I. Johnstone,et al.  Ideal spatial adaptation by wavelet shrinkage , 1994 .

[84]  J. Tropp JUST RELAX: CONVEX PROGRAMMING METHODS FOR SUBSET SELECTION AND SPARSE APPROXIMATION , 2004 .

[85]  Xiaoming Huo,et al.  Uncertainty principles and ideal atomic decomposition , 2001, IEEE Trans. Inf. Theory.

[86]  Don H. Johnson,et al.  Array Signal Processing: Concepts and Techniques , 1993 .

[87]  Jean-Jacques Fuchs,et al.  On the application of the global matched filter to DOA estimation with uniform circular arrays , 2000, 2000 IEEE International Conference on Acoustics, Speech, and Signal Processing. Proceedings (Cat. No.00CH37100).

[88]  P. Neittaanmäki,et al.  Nonsmooth Optimization: Analysis and Algorithms with Applications to Optimal Control , 1992 .

[89]  G. Wahba Spline models for observational data , 1990 .

[90]  Mauricio D. Sacchi,et al.  Interpolation and extrapolation using a high-resolution discrete Fourier transform , 1998, IEEE Trans. Signal Process..

[91]  N. S. Barnett,et al.  Private communication , 1969 .

[92]  Ralph Otto Schmidt,et al.  A signal subspace approach to multiple emitter location and spectral estimation , 1981 .

[93]  Rémi Gribonval,et al.  Sparse representations in unions of bases , 2003, IEEE Trans. Inf. Theory.

[94]  Harry L. Van Trees,et al.  Detection, Estimation, and Modulation Theory, Part I , 1968 .

[95]  W. Clem Karl,et al.  Feature-enhanced synthetic aperture radar image formation based on nonquadratic regularization , 2001, IEEE Trans. Image Process..

[96]  Michael A. Saunders,et al.  Atomic Decomposition by Basis Pursuit , 1998, SIAM J. Sci. Comput..

[97]  Anthony J. Weiss,et al.  Array shape calibration using eigenstructure methods , 1991, Signal Process..

[98]  Kim-Chuan Toh,et al.  SDPT3 -- A Matlab Software Package for Semidefinite Programming , 1996 .

[99]  Petre Stoica,et al.  MUSIC, maximum likelihood, and Cramer-Rao bound , 1989, IEEE Transactions on Acoustics, Speech, and Signal Processing.

[100]  H.L. Van Trees,et al.  Beamspace MODE , 2001, Conference Record of Thirty-Fifth Asilomar Conference on Signals, Systems and Computers (Cat.No.01CH37256).

[101]  Bhaskar D. Rao,et al.  Subset selection in noise based on diversity measure minimization , 2003, IEEE Trans. Signal Process..

[102]  Brian D. Jeffs Sparse inverse solution methods for signal and image processing applications , 1998, Proceedings of the 1998 IEEE International Conference on Acoustics, Speech and Signal Processing, ICASSP '98 (Cat. No.98CH36181).

[103]  Thomas Kailath,et al.  Detection of signals by information theoretic criteria , 1985, IEEE Trans. Acoust. Speech Signal Process..

[104]  W. Rudin Principles of mathematical analysis , 1964 .

[105]  R. Gribonval,et al.  Highly sparse representations from dictionaries are unique and independent of the sparseness measure , 2007 .