Positive definiteness and the Stolarsky invariance principle

In this paper we elaborate on the interplay between energy optimization, positive definiteness, and discrepancy. In particular, assuming the existence of a K-invariant measure μ with full support, we show that conditional positive definiteness of a kernel K is equivalent to a long list of other properties: including, among others, convexity of the energy functional, inequalities for mixed energies, and the fact that μ minimizes the energy integral in various senses. In addition, we prove a very general form of the Stolarsky Invariance Principle on compact spaces, which connects energy minimization and discrepancy and extends several previously known versions.

[1]  Jos'e A. Carrillo,et al.  From radial symmetry to fractal behavior of aggregation equilibria for repulsive-attractive potentials , 2021 .

[2]  Kai Borre,et al.  Potential Theory , 2006, Introduction to Stellar Dynamics.

[3]  J. Carrillo,et al.  Geometry of minimizers for the interaction energy with mildly repulsive potentials , 2016, 1607.08660.

[4]  J. Matousek,et al.  Geometric Discrepancy: An Illustrated Guide , 2009 .

[5]  A. Ron,et al.  Strictly positive definite functions on spheres in Euclidean spaces , 1994, Math. Comput..

[6]  William W. L. Chen On irregularities of distribution. , 1980 .

[7]  J. Dick,et al.  A simple proof of Stolarsky’s invariance principle , 2011, 1101.4448.

[8]  A. Blokhuis SPHERE PACKINGS, LATTICES AND GROUPS (Grundlehren der mathematischen Wissenschaften 290) , 1989 .

[9]  Yuan Xu,et al.  Approximation Theory and Harmonic Analysis on Spheres and Balls , 2013 .

[10]  Alexander Barg,et al.  Stolarsky's invariance principle for finite metric spaces , 2020, ArXiv.

[11]  Holger Dette,et al.  A New Approach to Optimal Design for Linear Models With Correlated Observations , 2010, 1303.2863.

[12]  Douglas P Hardin,et al.  Discrete Energy on Rectifiable Sets , 2019, Springer Monographs in Mathematics.

[13]  J. Mercer Functions of Positive and Negative Type, and their Connection with the Theory of Integral Equations , 1909 .

[14]  A. Hinrichs,et al.  A note on the metric geometry of the unit ball , 2011 .

[15]  G. Fasshauer Positive definite kernels: past, present and future , 2011 .

[16]  Alexander Barg,et al.  Bounds for discrepancies in the Hamming space , 2020, J. Complex..

[17]  A. Zhigljavsky,et al.  A New Approach to Optimal Design for Linear Models With Correlated Observations , 2010 .

[18]  Sidney A. Morris,et al.  NUMERICAL GEOMETRY-NUMBERS FOR SHAPES , 1986 .

[19]  R. Gangolli,et al.  Positive definite kernels on homogeneous spaces and certain stochastic processes related to Lévy's brownian motion of several parameters , 1967 .

[20]  Ryan Matzke,et al.  Potential theory with multivariate kernels , 2021 .

[21]  L. Pronzato,et al.  Bayesian quadrature and energy minimization for space-filling design , 2018, 1808.10722.

[22]  Elizabeth Meckes,et al.  The Random Matrix Theory of the Classical Compact Groups , 2019 .

[23]  M.M.Skriganov Point distributions in compact metric spaces , 2015, 1512.00364.

[24]  Frank Vallentin,et al.  A recursive Lov\'asz theta number for simplex-avoiding sets , 2021 .

[25]  Decorrelation as an avatar of convexity , 2015, 1507.00782.

[26]  M. M. Skriganov Stolarsky's invariance principle for projective spaces , 2020, J. Complex..

[27]  N. Aronszajn Theory of Reproducing Kernels. , 1950 .

[28]  F. Finster,et al.  On the Support of Minimizers of Causal Variational Principles , 2010, 1012.1589.

[29]  Glyn Harman,et al.  Sums of distances between points of a sphere , 1982 .

[30]  Lauwerens Kuipers,et al.  Uniform distribution of sequences , 1974 .

[31]  D. Bilyk,et al.  The Stolarsky Principle and Energy Optimization on the Sphere , 2016, 1611.04420.

[32]  Hera Y. He,et al.  Permutation $p$-value approximation via generalized Stolarsky invariance , 2016, The Annals of Statistics.

[33]  Otto Frostman Potentiel d'équilibre et capacité des ensembles : Avec quelques applications a la théorie des fonctions , 1935 .

[34]  D. Bilyk,et al.  Geodesic distance Riesz energy on the sphere , 2016, Transactions of the American Mathematical Society.

[35]  Ryan Matzke,et al.  Energy on spheres and discreteness of minimizing measures , 2019, Journal of Functional Analysis.