Positive definiteness and the Stolarsky invariance principle
暂无分享,去创建一个
[1] Jos'e A. Carrillo,et al. From radial symmetry to fractal behavior of aggregation equilibria for repulsive-attractive potentials , 2021 .
[2] Kai Borre,et al. Potential Theory , 2006, Introduction to Stellar Dynamics.
[3] J. Carrillo,et al. Geometry of minimizers for the interaction energy with mildly repulsive potentials , 2016, 1607.08660.
[4] J. Matousek,et al. Geometric Discrepancy: An Illustrated Guide , 2009 .
[5] A. Ron,et al. Strictly positive definite functions on spheres in Euclidean spaces , 1994, Math. Comput..
[6] William W. L. Chen. On irregularities of distribution. , 1980 .
[7] J. Dick,et al. A simple proof of Stolarsky’s invariance principle , 2011, 1101.4448.
[8] A. Blokhuis. SPHERE PACKINGS, LATTICES AND GROUPS (Grundlehren der mathematischen Wissenschaften 290) , 1989 .
[9] Yuan Xu,et al. Approximation Theory and Harmonic Analysis on Spheres and Balls , 2013 .
[10] Alexander Barg,et al. Stolarsky's invariance principle for finite metric spaces , 2020, ArXiv.
[11] Holger Dette,et al. A New Approach to Optimal Design for Linear Models With Correlated Observations , 2010, 1303.2863.
[12] Douglas P Hardin,et al. Discrete Energy on Rectifiable Sets , 2019, Springer Monographs in Mathematics.
[13] J. Mercer. Functions of Positive and Negative Type, and their Connection with the Theory of Integral Equations , 1909 .
[14] A. Hinrichs,et al. A note on the metric geometry of the unit ball , 2011 .
[15] G. Fasshauer. Positive definite kernels: past, present and future , 2011 .
[16] Alexander Barg,et al. Bounds for discrepancies in the Hamming space , 2020, J. Complex..
[17] A. Zhigljavsky,et al. A New Approach to Optimal Design for Linear Models With Correlated Observations , 2010 .
[18] Sidney A. Morris,et al. NUMERICAL GEOMETRY-NUMBERS FOR SHAPES , 1986 .
[19] R. Gangolli,et al. Positive definite kernels on homogeneous spaces and certain stochastic processes related to Lévy's brownian motion of several parameters , 1967 .
[20] Ryan Matzke,et al. Potential theory with multivariate kernels , 2021 .
[21] L. Pronzato,et al. Bayesian quadrature and energy minimization for space-filling design , 2018, 1808.10722.
[22] Elizabeth Meckes,et al. The Random Matrix Theory of the Classical Compact Groups , 2019 .
[23] M.M.Skriganov. Point distributions in compact metric spaces , 2015, 1512.00364.
[24] Frank Vallentin,et al. A recursive Lov\'asz theta number for simplex-avoiding sets , 2021 .
[25] Decorrelation as an avatar of convexity , 2015, 1507.00782.
[26] M. M. Skriganov. Stolarsky's invariance principle for projective spaces , 2020, J. Complex..
[27] N. Aronszajn. Theory of Reproducing Kernels. , 1950 .
[28] F. Finster,et al. On the Support of Minimizers of Causal Variational Principles , 2010, 1012.1589.
[29] Glyn Harman,et al. Sums of distances between points of a sphere , 1982 .
[30] Lauwerens Kuipers,et al. Uniform distribution of sequences , 1974 .
[31] D. Bilyk,et al. The Stolarsky Principle and Energy Optimization on the Sphere , 2016, 1611.04420.
[32] Hera Y. He,et al. Permutation $p$-value approximation via generalized Stolarsky invariance , 2016, The Annals of Statistics.
[33] Otto Frostman. Potentiel d'équilibre et capacité des ensembles : Avec quelques applications a la théorie des fonctions , 1935 .
[34] D. Bilyk,et al. Geodesic distance Riesz energy on the sphere , 2016, Transactions of the American Mathematical Society.
[35] Ryan Matzke,et al. Energy on spheres and discreteness of minimizing measures , 2019, Journal of Functional Analysis.