Measurement of slopes of structural deflections by speckle-shearing interferometry

A specimen illuminated by coherent light is imaged by a camera through a shearing mechanism so that the speckle from one point on the surface can be made to interfere with the speckle from a neighboring point. The resultant speckle pattern is recorded. By mechanically interfering the recorded speckle pattern corresponding to deformed and undeformed states of the specimen, respectively, using double-exposure technique, a speckle-moiré-fringe pattern is generated. These fringes which depict derivatives of deflections of the specimen are made visible by spatial-filtering technique. Speckle-moiré fringes can also be obtained in real time. This method is a new interferometry and will be referred to as “speckle-shearing interferometry”.Speckle-shearing interferometry has the same function as Ligtenberg's technique. However, it does not have the sometimes inconvenient requirement of Ligtenberg's technique that the surface of the specimen must be of mirror quality. The new technique will be particularly useful in studies of flexural deformation such as flexed beams and plates.Although speckle-shearing interferometry is an interferometric method, it overcomes several of the limitations associated with holographic and speckle interferometries, namely: (1) the setup is simple and does not need laborious alignments of optical components, (2) it does not require stringent mechanical and ambient stabilities, (3) coherent requirement of light is greatly relaxed, and (4) the sensitivity is reduced that somehow fills the gap in sensitivity between moiré techniques and holographic or speckle interferometry.