Asymptotic safety on the lattice: The nonlinear O(N) sigma model

Abstract We study the non-perturbative renormalization group flow of the nonlinear O ( N ) sigma model in two and three spacetime dimensions using a scheme that combines an effective local Hybrid Monte Carlo update routine, blockspin transformations and a Monte Carlo demon method. In two dimensions our results verify perturbative renormalizability. In three dimensions, we determine the flow diagram of the theory for various N and different truncations and find a non-trivial fixed point, which indicates non-perturbative renormalizability. It is related to the well-studied phase transition of the O ( N ) universality class and characterizes the continuum physics of the model. We compare the obtained renormalization group flows with recent investigations by means of the Functional Renormalization Group.

[1]  I. Aref’eva,et al.  Phase transition in the three-dimensional chiral field , 1979 .

[2]  M. Hasenbusch,et al.  Anisotropic perturbations in three-dimensional O(N)-symmetric vector models , 2011, 1108.0491.

[3]  A. Wipf,et al.  Phase diagram of the lattice G{sub 2} Higgs model , 2011, 1102.1900.

[4]  L. Debbio,et al.  Monte Carlo renormalization group minimal walking technicolor , 2012 .

[5]  Chen,et al.  Static critical behavior of three-dimensional classical Heisenberg models: A high-resolution Monte Carlo study. , 1993, Physical review. B, Condensed matter.

[6]  W. Marsden I and J , 2012 .

[7]  Frank Saueressig,et al.  ASYMPTOTIC SAFETY IN HIGHER-DERIVATIVE GRAVITY , 2009, 0901.2984.

[8]  Y. Okabe,et al.  1/n Expansion Up to Order 1/n 2 . III ---Critical Exponents γ and ν for d=3--- , 1978 .

[9]  C. Lang On the continuum limit of D = 4 lattice φ4 theory☆ , 1986 .

[10]  Robert Shrock,et al.  Phase Transition in the Nonlinear Sigma Model in Two + Epsilon Dimensional Continuum , 1976 .

[11]  A. Wipf,et al.  Functional renormalization group of the nonlinear sigma model and theO(N)universality class , 2012, 1207.4499.

[12]  Daniel F. Litim,et al.  Renormalization group and the Planck scale , 2011, Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences.

[13]  L. Kadanoff Scaling laws for Ising models near T(c) , 1966 .

[14]  Improved Monte Carlo renormalization group methods , 1984 .

[15]  F. Saueressig,et al.  Renormalization group flow of quantum gravity in the Einstein-Hilbert truncation , 2002 .

[16]  É. Brézin,et al.  Renormalization of the nonlinear sigma model in 2 + epsilon dimensions. Application to the Heisenberg ferromagnets , 1976 .

[17]  N vector spin models on the sc and the bcc lattices: A Study of the critical behavior of the susceptibility and of the correlation length by high temperature series extended to order beta(21) , 1997, hep-lat/9703018.

[18]  S. Shenker,et al.  Monte Carlo Renormalization Group Analysis of the Classical Heisenberg Model in Two-Dimensions , 1980 .

[19]  R. Percacci,et al.  Fixed points of nonlinear sigma models in d > 2 , 2008, 0810.0715.

[20]  Holger Gies,et al.  UV fixed-point structure of the three-dimensional Thirring model , 2010, 1006.3747.

[21]  RENORMALIZATION GROUP FLOW EQUATIONS AND THE PHASE TRANSITION IN O(N)-MODELS , 2000, hep-ph/0007098.

[22]  Andrea Pelissetto,et al.  Critical phenomena and renormalization-group theory , 2002 .

[23]  J. Jurkiewicz,et al.  Dynamically Triangulating Lorentzian Quantum Gravity , 2001, hep-th/0105267.

[24]  M. Hasenbusch,et al.  Canonical Demon Monte Carlo Renormalization Group , 1994, hep-lat/9411043.

[25]  Heinrich Leutwyler,et al.  Chiral perturbation theory to one loop , 1984 .

[26]  J. Zinn-Justin Quantum Field Theory and Critical Phenomena , 2002 .

[27]  The shape of the renormalized trajectory in the two-dimensional O(N) non-linear sigma model , 1995, hep-lat/9510051.

[28]  U. Wolff,et al.  A Numerical method to compute the running coupling in asymptotically free theories , 1991 .

[29]  Critical exponents and equation of state of the three-dimensional Heisenberg universality class , 2001, cond-mat/0110336.

[30]  C. Wetterich,et al.  Exact evolution equation for the effective potential , 1993, 1710.05815.

[31]  Shang‐keng Ma Renormalization Group by Monte Carlo Methods , 1976 .

[32]  J. Hirsch,et al.  Block-spin renormalization group in the large-nlimit , 1983 .

[33]  A. Hasenfratz,et al.  The β function of the two-dimensional non-linear σ model , 1984 .

[34]  Andreas Tröster,et al.  Wilson's momentum shell renormalization group from Fourier Monte Carlo simulations , 2011, Comput. Phys. Commun..

[35]  The critical exponents of the superfluid transition in He4 , 2006, cond-mat/0605083.

[36]  A. Polyakov Interaction of Goldstone Particles in Two-Dimensions. Applications to Ferromagnets and Massive Yang-Mills Fields , 1975 .

[37]  K. Wilson The renormalization group: Critical phenomena and the Kondo problem , 1975 .