Asymptotic safety on the lattice: The nonlinear O(N) sigma model
暂无分享,去创建一个
[1] I. Aref’eva,et al. Phase transition in the three-dimensional chiral field , 1979 .
[2] M. Hasenbusch,et al. Anisotropic perturbations in three-dimensional O(N)-symmetric vector models , 2011, 1108.0491.
[3] A. Wipf,et al. Phase diagram of the lattice G{sub 2} Higgs model , 2011, 1102.1900.
[4] L. Debbio,et al. Monte Carlo renormalization group minimal walking technicolor , 2012 .
[5] Chen,et al. Static critical behavior of three-dimensional classical Heisenberg models: A high-resolution Monte Carlo study. , 1993, Physical review. B, Condensed matter.
[6] W. Marsden. I and J , 2012 .
[7] Frank Saueressig,et al. ASYMPTOTIC SAFETY IN HIGHER-DERIVATIVE GRAVITY , 2009, 0901.2984.
[8] Y. Okabe,et al. 1/n Expansion Up to Order 1/n 2 . III ---Critical Exponents γ and ν for d=3--- , 1978 .
[9] C. Lang. On the continuum limit of D = 4 lattice φ4 theory☆ , 1986 .
[10] Robert Shrock,et al. Phase Transition in the Nonlinear Sigma Model in Two + Epsilon Dimensional Continuum , 1976 .
[11] A. Wipf,et al. Functional renormalization group of the nonlinear sigma model and theO(N)universality class , 2012, 1207.4499.
[12] Daniel F. Litim,et al. Renormalization group and the Planck scale , 2011, Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences.
[13] L. Kadanoff. Scaling laws for Ising models near T(c) , 1966 .
[14] Improved Monte Carlo renormalization group methods , 1984 .
[15] F. Saueressig,et al. Renormalization group flow of quantum gravity in the Einstein-Hilbert truncation , 2002 .
[16] É. Brézin,et al. Renormalization of the nonlinear sigma model in 2 + epsilon dimensions. Application to the Heisenberg ferromagnets , 1976 .
[17] N vector spin models on the sc and the bcc lattices: A Study of the critical behavior of the susceptibility and of the correlation length by high temperature series extended to order beta(21) , 1997, hep-lat/9703018.
[18] S. Shenker,et al. Monte Carlo Renormalization Group Analysis of the Classical Heisenberg Model in Two-Dimensions , 1980 .
[19] R. Percacci,et al. Fixed points of nonlinear sigma models in d > 2 , 2008, 0810.0715.
[20] Holger Gies,et al. UV fixed-point structure of the three-dimensional Thirring model , 2010, 1006.3747.
[21] RENORMALIZATION GROUP FLOW EQUATIONS AND THE PHASE TRANSITION IN O(N)-MODELS , 2000, hep-ph/0007098.
[22] Andrea Pelissetto,et al. Critical phenomena and renormalization-group theory , 2002 .
[23] J. Jurkiewicz,et al. Dynamically Triangulating Lorentzian Quantum Gravity , 2001, hep-th/0105267.
[24] M. Hasenbusch,et al. Canonical Demon Monte Carlo Renormalization Group , 1994, hep-lat/9411043.
[25] Heinrich Leutwyler,et al. Chiral perturbation theory to one loop , 1984 .
[26] J. Zinn-Justin. Quantum Field Theory and Critical Phenomena , 2002 .
[27] The shape of the renormalized trajectory in the two-dimensional O(N) non-linear sigma model , 1995, hep-lat/9510051.
[28] U. Wolff,et al. A Numerical method to compute the running coupling in asymptotically free theories , 1991 .
[29] Critical exponents and equation of state of the three-dimensional Heisenberg universality class , 2001, cond-mat/0110336.
[30] C. Wetterich,et al. Exact evolution equation for the effective potential , 1993, 1710.05815.
[31] Shang‐keng Ma. Renormalization Group by Monte Carlo Methods , 1976 .
[32] J. Hirsch,et al. Block-spin renormalization group in the large-nlimit , 1983 .
[33] A. Hasenfratz,et al. The β function of the two-dimensional non-linear σ model , 1984 .
[34] Andreas Tröster,et al. Wilson's momentum shell renormalization group from Fourier Monte Carlo simulations , 2011, Comput. Phys. Commun..
[35] The critical exponents of the superfluid transition in He4 , 2006, cond-mat/0605083.
[36] A. Polyakov. Interaction of Goldstone Particles in Two-Dimensions. Applications to Ferromagnets and Massive Yang-Mills Fields , 1975 .
[37] K. Wilson. The renormalization group: Critical phenomena and the Kondo problem , 1975 .