Combined outputs framework for twin support vector machines

[1]  Yuan-Hai Shao,et al.  Laplacian unit-hyperplane learning from positive and unlabeled examples , 2015, Inf. Sci..

[2]  Shuyin Xia,et al.  Relative density based support vector machine , 2015, Neurocomputing.

[3]  Yong Shi,et al.  ν-Nonparallel support vector machine for pattern classification , 2014, Neural Computing and Applications.

[4]  Yuan-Hai Shao,et al.  Nonparallel hyperplane support vector machine for binary classification problems , 2014, Inf. Sci..

[5]  Sang Won Yoon,et al.  Breast cancer diagnosis based on feature extraction using a hybrid of K-means and support vector machine algorithms , 2014, Expert Syst. Appl..

[6]  Anamika Yadav,et al.  Iris recognition using combined support vector machine and Hamming distance approach , 2014, Expert Syst. Appl..

[7]  Yuan-Hai Shao,et al.  A proximal classifier with consistency , 2013, Knowl. Based Syst..

[8]  Ying-jie Tian,et al.  Support Vector Machines: Optimization Based Theory, Algorithms, and Extensions , 2012 .

[9]  Yuan-Hai Shao,et al.  Probabilistic outputs for twin support vector machines , 2012, Knowl. Based Syst..

[10]  Sridha Sridharan,et al.  Improved facial expression recognition via uni-hyperplane classification , 2012, 2012 IEEE Conference on Computer Vision and Pattern Recognition.

[11]  Yuan-Hai Shao,et al.  Least squares recursive projection twin support vector machine for classification , 2012, Pattern Recognit..

[12]  Yuan-Hai Shao,et al.  A novel margin-based twin support vector machine with unity norm hyperplanes , 2012, Neural Computing and Applications.

[13]  Zhi-Hua Zhou,et al.  Towards Making Unlabeled Data Never Hurt , 2011, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[14]  Yuan-Hai Shao,et al.  Improvements on Twin Support Vector Machines , 2011, IEEE Transactions on Neural Networks.

[15]  Chih-Jen Lin,et al.  LIBSVM: A library for support vector machines , 2011, TIST.

[16]  N. Deng,et al.  Improved prediction of palmitoylation sites using PWMs and SVM. , 2011, Protein and peptide letters.

[17]  Santanu Ghorai,et al.  Unity norm twin support vector machine classifier , 2010, 2010 Annual IEEE India Conference (INDICON).

[18]  Francisco Herrera,et al.  Advanced nonparametric tests for multiple comparisons in the design of experiments in computational intelligence and data mining: Experimental analysis of power , 2010, Inf. Sci..

[19]  Patrick Lin,et al.  Autonomous Military Robotics: Risk, Ethics, and Design , 2008 .

[20]  Lei Wang,et al.  AdaBoost with SVM-based component classifiers , 2008, Eng. Appl. Artif. Intell..

[21]  Reshma Khemchandani,et al.  Twin Support Vector Machines for Pattern Classification , 2007, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[22]  S. Sathiya Keerthi,et al.  Branch and Bound for Semi-Supervised Support Vector Machines , 2006, NIPS.

[23]  J. Demšar Statistical Comparisons of Classifiers over Multiple Data Sets , 2006, J. Mach. Learn. Res..

[24]  S. Sathiya Keerthi,et al.  Deterministic annealing for semi-supervised kernel machines , 2006, ICML.

[25]  Nello Cristianini,et al.  Convex Methods for Transduction , 2003, NIPS.

[26]  Glenn Fung,et al.  Proximal support vector machine classifiers , 2001, KDD '01.

[27]  Tong Zhang An Introduction to Support Vector Machines and Other Kernel-Based Learning Methods , 2001, AI Mag..

[28]  O. Mangasarian,et al.  Massive data discrimination via linear support vector machines , 2000 .

[29]  Christopher J. C. Burges,et al.  A Tutorial on Support Vector Machines for Pattern Recognition , 1998, Data Mining and Knowledge Discovery.

[30]  Corinna Cortes,et al.  Support-Vector Networks , 1995, Machine Learning.

[31]  Emile H. L. Aarts,et al.  Simulated Annealing: Theory and Applications , 1987, Mathematics and Its Applications.

[32]  Scott Kirkpatrick,et al.  Optimization by simulated annealing: Quantitative studies , 1984 .

[33]  Yong Shi,et al.  Robust twin support vector machine for pattern classification , 2013, Pattern Recognit..

[34]  Yuan-Hai Shao,et al.  A regularization for the projection twin support vector machine , 2013, Knowl. Based Syst..

[35]  Yuan-Hai Shao,et al.  A coordinate descent margin based-twin support vector machine for classification , 2012, Neural Networks.

[36]  Dirk Van,et al.  Ensemble Methods: Foundations and Algorithms , 2012 .

[37]  Anirban Mukherjee,et al.  Newton's method for nonparallel plane proximal classifier with unity norm hyperplanes , 2010, Signal Process..

[38]  Reshma Khemchandani,et al.  Regularized least squares fuzzy support vector regression for financial time series forecasting , 2009, Expert Syst. Appl..

[39]  S. García,et al.  An Extension on "Statistical Comparisons of Classifiers over Multiple Data Sets" for all Pairwise Comparisons , 2008 .

[40]  Olvi L. Mangasarian,et al.  Multisurface proximal support vector machine classification via generalized eigenvalues , 2006, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[41]  Bernhard Schölkopf,et al.  Kernel Methods in Computational Biology , 2005 .

[42]  Catherine Blake,et al.  UCI Repository of machine learning databases , 1998 .

[43]  David G. Stork,et al.  Pattern Classification , 1973 .