Imaging of activated cortical areas after light and electrical stimulation of the rabbit retina: F-18 FDG PET-guided brain mapping

[1]  Alice K. Cho,et al.  Retinal prostheses: current clinical results and future needs. , 2011, Ophthalmology.

[2]  Dae Hyuk Moon,et al.  Assessment of Cerebral Glucose Metabolism in Cat Deafness Model: Strategies for Improving the Voxel-Based Statistical Analysis for Animal PET Studies , 2008, Molecular Imaging and Biology.

[3]  S. J. Kim,et al.  A Suprachoroidal Electrical Retinal Stimulator Design for Long-Term Animal Experiments and In Vivo Assessment of Its Feasibility and Biocompatibility in Rabbits , 2008, Journal of biomedicine & biotechnology.

[4]  Y. Tano,et al.  Evaluation of phosphenes elicited by extraocular stimulation in normals and by suprachoroidal-transretinal stimulation in patients with retinitis pigmentosa , 2007, Graefe's Archive for Clinical and Experimental Ophthalmology.

[5]  Mark A. Mintun,et al.  Human brain glucose metabolism may evolve during activation: Findings from a modified FDG PET paradigm , 2006, NeuroImage.

[6]  Andrei G. Vlassenko,et al.  Regulation of blood flow in activated human brain by cytosolic NADH/NAD+ ratio. , 2006, Proceedings of the National Academy of Sciences of the United States of America.

[7]  J. Morley,et al.  Stimulation of the retina with a multielectrode extraocular visual prosthesis , 2005, ANZ journal of surgery.

[8]  Joseph F Rizzo,et al.  Comparison of electrically evoked cortical potential thresholds generated with subretinal or suprachoroidal placement of a microelectrode array in the rabbit , 2005, Journal of neural engineering.

[9]  Jason Dowling,et al.  Artificial human vision , 2005, Expert review of medical devices.

[10]  M. Kiyosawa,et al.  Investigation of the Use of Positron Emission Tomography for Neuroreceptor Imaging in Rabbit Eyes , 2004, Ophthalmic Research.

[11]  A. Y. Chow,et al.  The artificial silicon retina microchip for the treatment of vision loss from retinitis pigmentosa. , 2004, Archives of ophthalmology.

[12]  S. Kelly,et al.  Perceptual efficacy of electrical stimulation of human retina with a microelectrode array during short-term surgical trials. , 2003, Investigative ophthalmology & visual science.

[13]  Gislin Dagnelie,et al.  Visual perception in a blind subject with a chronic microelectronic retinal prosthesis , 2003, Vision Research.

[14]  Jae Sung Lee,et al.  PET evidence of neuroplasticity in adult auditory cortex of postlingual deafness. , 2003, Journal of nuclear medicine : official publication, Society of Nuclear Medicine.

[15]  J. S. Lee,et al.  Deafness: Cross-modal plasticity and cochlear implants , 2001, Nature.

[16]  S. A. Talbot,et al.  Visual areas I and II of cerebral cortex of rabbit. , 1950, Federation proceedings.

[17]  D. Lee,et al.  Characteristics of glucose metabolism in the visual cortex of amblyopes using positron-emission tomography and statistical parametric mapping. , 2002, Journal of pediatric ophthalmology and strabismus.

[18]  B. Mazoyer,et al.  PET study of the human foveal fixation system , 1999, Human brain mapping.

[19]  A. Hughes,et al.  Callosal terminations along the boundary between visual areas I and II in the rabbit. , 1969, Brain research.

[20]  Medical Policy Manual , 2022 .