Effect of isotropic and anisotropic porous microstructure on electrochemical performance of Li ion battery cathodes: An experimental and computational study

[1]  J. McKittrick,et al.  Microstructural evolution of paramagnetic materials by magnetic freeze casting , 2019, Journal of Materials Research and Technology.

[2]  Frances Y. Su,et al.  External Field Assisted Freeze Casting , 2019, Ceramics.

[3]  Asit Sahoo,et al.  Numerical modelling of transport limitations in lithium titanate anodes , 2018, Electrochimica Acta.

[4]  S. C. Maiti,et al.  Reaction kinetics to infer the effect of dopants on ion transport - A case study for Mo+6 doped lithium titanates (Li2TiO3-δ and Li4Ti5O12-δ) , 2018, Ceramics International.

[5]  Y. Chiang,et al.  Electrochemical Characterization of High Energy Density Graphite Electrodes Made by Freeze-Casting , 2018, ACS Applied Energy Materials.

[6]  J. Nanda,et al.  Freeze Tape Cast Thick Mo Doped Li4Ti5O12 Electrodes for Lithium-Ion Batteries , 2017 .

[7]  Gaojie Xu,et al.  Li4Ti5O12-based energy conversion and storage systems: Status and prospects , 2017 .

[8]  A. Latz,et al.  Thick electrodes for Li-ion batteries: A model based analysis , 2016 .

[9]  F. Jiang,et al.  Elucidating the Performance Limitations of Lithium-ion Batteries due to Species and Charge Transport through Five Characteristic Parameters , 2016, Scientific Reports.

[10]  S. Pannala,et al.  A three-dimensional meso-macroscopic model for Li-Ion intercalation batteries , 2016 .

[11]  Ali Ghorbani Kashkooli,et al.  Nano-particle size effect on the performance of Li4Ti5O12 spinel , 2016 .

[12]  Zongping Shao,et al.  A comprehensive review of Li4Ti5O12-based electrodes for lithium-ion batteries: The latest advancements and future perspectives , 2015 .

[13]  Corie Lynn Cobb,et al.  Modeling mass and density distribution effects on the performance of co-extruded electrodes for high energy density lithium-ion batteries , 2014 .

[14]  Xiangming He,et al.  Electro-thermal modeling and experimental validation for lithium ion battery , 2012 .

[15]  Paul V. Braun,et al.  Three-dimensional bicontinuous ultrafast-charge and -discharge bulk battery electrodes. , 2011, Nature nanotechnology.

[16]  Jong-Sung Yu,et al.  Ordered multimodal porous carbon with hierarchical nanostructure for high Li storage capacity and good cycling performance , 2010 .

[17]  D. Guyomard,et al.  Ionic vs Electronic Power Limitations and Analysis of the Fraction of Wired Grains in LiFePO4 Composite Electrodes , 2010 .

[18]  Cara M. Doherty,et al.  Colloidal Crystal Templating to Produce Hierarchically Porous LiFePO4 Electrode Materials for High Power Lithium Ion Batteries , 2009 .

[19]  M. Behm,et al.  Electrochemical characterisation and modelling of the mass transport phenomena in LiPF6–EC–EMC electrolyte , 2008 .

[20]  John N. Harb,et al.  Modeling of Particle-Particle Interactions in Porous Cathodes for Lithium-Ion Batteries , 2007 .

[21]  K. Kanamura,et al.  Preparation and characterization of three dimensionally ordered macroporous Li4Ti5O12 anode for lithium batteries , 2007 .

[22]  Yu-Guo Guo,et al.  Superior Electrode Performance of Nanostructured Mesoporous TiO2 (Anatase) through Efficient Hierarchical Mixed Conducting Networks , 2007 .

[23]  Sarmimala Hore,et al.  Synthesis of Hierarchically Porous Carbon Monoliths with Highly Ordered Microstructure and Their Application in Rechargeable Lithium Batteries with High‐Rate Capability , 2007 .

[24]  Robert Dominko,et al.  Wired Porous Cathode Materials: A Novel Concept for Synthesis of LiFePO4 , 2007 .

[25]  Robert Dominko,et al.  Mass and charge transport in hierarchically organized storage materials. Example: Porous active materials with nanocoated walls of pores , 2006 .

[26]  Justin C. Lytle,et al.  Photonic Crystal Structures as a Basis for a Three‐Dimensionally Interpenetrating Electrochemical‐Cell System , 2006 .

[27]  A. Cooper,et al.  Synthesis and applications of emulsion-templated porous materials. , 2005, Soft matter.

[28]  Bruce Dunn,et al.  Hierarchical battery electrodes based on inverted opal structures , 2002 .

[29]  A. Stein Sphere templating methods for periodic porous solids , 2001 .

[30]  A. Imhof,et al.  Ordered macroporous materials by emulsion templating , 1997, Nature.

[31]  J. Tarascon,et al.  Comparison of Modeling Predictions with Experimental Data from Plastic Lithium Ion Cells , 1996 .

[32]  M. Doyle,et al.  Modeling of Galvanostatic Charge and Discharge of the Lithium/Polymer/Insertion Cell , 1993 .

[33]  Y. Chiang,et al.  Impact of Pore Tortuosity on Electrode Kinetics in Lithium Battery Electrodes: Study in Directionally Freeze-Cast LiNi0.8Co0.15Al0.05O2 (NCA) , 2018 .

[34]  H. Gasteiger,et al.  Influence of the Binder on Lithium Ion Battery Electrode Tortuosity and Performance , 2018 .

[35]  Kevin G. Gallagher,et al.  Optimizing areal capacities through understanding the limitations of lithium-ion electrodes , 2016 .

[36]  Guangchuan Liang,et al.  Synthesis and electrochemical performance of Li4Ti5O12/C composite by a starch sol assisted method , 2012 .

[37]  M. Doyle,et al.  Simulation and Optimization of the Dual Lithium Ion Insertion Cell , 1994 .